Machine learning approaches for crop improvement : Leveraging phenotypic and genotypic big data

Copyright © 2020 The Author(s). Published by Elsevier GmbH.. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 257(2021) vom: 01. Feb., Seite 153354
1. Verfasser: Tong, Hao (VerfasserIn)
Weitere Verfasser: Nikoloski, Zoran
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Review Genomic prediction Genomic selection G×E interaction Machine learning Multi-omics Multiple traits
LEADER 01000caa a22002652c 4500
001 NLM319496511
003 DE-627
005 20250228160117.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jplph.2020.153354  |2 doi 
028 5 2 |a pubmed25n1064.xml 
035 |a (DE-627)NLM319496511 
035 |a (NLM)33385619 
035 |a (PII)S0176-1617(20)30244-3 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tong, Hao  |e verfasserin  |4 aut 
245 1 0 |a Machine learning approaches for crop improvement  |b Leveraging phenotypic and genotypic big data 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.05.2021 
500 |a Date Revised 27.05.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2020 The Author(s). Published by Elsevier GmbH.. All rights reserved. 
520 |a Highly efficient and accurate selection of elite genotypes can lead to dramatic shortening of the breeding cycle in major crops relevant for sustaining present demands for food, feed, and fuel. In contrast to classical approaches that emphasize the need for resource-intensive phenotyping at all stages of artificial selection, genomic selection dramatically reduces the need for phenotyping. Genomic selection relies on advances in machine learning and the availability of genotyping data to predict agronomically relevant phenotypic traits. Here we provide a systematic review of machine learning approaches applied for genomic selection of single and multiple traits in major crops in the past decade. We emphasize the need to gather data on intermediate phenotypes, e.g. metabolite, protein, and gene expression levels, along with developments of modeling techniques that can lead to further improvements of genomic selection. In addition, we provide a critical view of factors that affect genomic selection, with attention to transferability of models between different environments. Finally, we highlight the future aspects of integrating high-throughput molecular phenotypic data from omics technologies with biological networks for crop improvement 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a Genomic prediction 
650 4 |a Genomic selection 
650 4 |a G×E interaction 
650 4 |a Machine learning 
650 4 |a Multi-omics 
650 4 |a Multiple traits 
700 1 |a Nikoloski, Zoran  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of plant physiology  |d 1979  |g 257(2021) vom: 01. Feb., Seite 153354  |w (DE-627)NLM098174622  |x 1618-1328  |7 nnas 
773 1 8 |g volume:257  |g year:2021  |g day:01  |g month:02  |g pages:153354 
856 4 0 |u http://dx.doi.org/10.1016/j.jplph.2020.153354  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 257  |j 2021  |b 01  |c 02  |h 153354