|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM319470016 |
003 |
DE-627 |
005 |
20231225171518.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.0c03125
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1064.xml
|
035 |
|
|
|a (DE-627)NLM319470016
|
035 |
|
|
|a (NLM)33382946
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Du, Bingang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Preferential Vapor Nucleation on Hierarchical Tapered Nanowire Bunches
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 19.01.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Controlling vapor nucleation on micro-/nanostructured surfaces is critical to achieving exciting droplet dynamics and condensation enhancement. However, the underlying mechanism of nucleation phenomena remains unclear because of its nature of nanoscale and transience, especially for the complex-structured surfaces. Manipulating vapor nucleation via the rational surface design of micro-/nanostructures is extremely challenging. Here, we fabricate hierarchical surfaces comprising tapered nanowire bunches and crisscross microgrooves. Nanosteps are formed around the top of the nanowire bunches, where the nanowires all around agglomerate densely because of surface tension. The theoretical analysis and molecular dynamics simulation show that nanostep morphologies that are around the top of the nanowire bunches can enable a lower energy barrier and a higher nucleation capability than those of the sparsely packed nanowires at the center and bottom of the nanowire bunches. Vapor condensation experiments demonstrate that the nucleation preferentially occurs around the top of the nanowire bunches. The results provide guidelines to design micro-/nanostructures for promoting vapor nucleation and droplet removal in condensation
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Cheng, Yaqi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Siyan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Wei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lan, Zhong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wen, Rongfu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ma, Xuehu
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 37(2021), 2 vom: 19. Jan., Seite 774-784
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:37
|g year:2021
|g number:2
|g day:19
|g month:01
|g pages:774-784
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.0c03125
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 37
|j 2021
|e 2
|b 19
|c 01
|h 774-784
|