Loss-Based Attention for Interpreting Image-Level Prediction of Convolutional Neural Networks

Although deep neural networks have achieved great success on numerous large-scale tasks, poor interpretability is still a notorious obstacle for practical applications. In this paper, we propose a novel and general attention mechanism, loss-based attention, upon which we modify deep neural networks...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 14., Seite 1662-1675
1. Verfasser: Shi, Xiaoshuang (VerfasserIn)
Weitere Verfasser: Xing, Fuyong, Xu, Kaidi, Chen, Pingjun, Liang, Yun, Lu, Zhiyong, Guo, Zhenhua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article