A Theoretical Model for Analyzing the Thickness-Shear Vibration of a Circular Quartz Crystal Plate With Multiple Concentric Ring Electrodes

A dynamic model to analyze the thickness-shear vibration of a circular quartz crystal plate with multiple concentric ring electrodes on its upper and bottom surfaces is established with the aid of coordinate transformation. The theoretical solution is obtained, which can be written in a superpositio...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 68(2021), 5 vom: 05. Mai, Seite 1808-1818
1. Verfasser: Zhu, Feng (VerfasserIn)
Weitere Verfasser: Li, Peng, Dai, Xiaoyun, Qian, Zhenghua, Kuznetsova, Iren E, Kolesov, Vladimir, Ma, Tingfeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM319467074
003 DE-627
005 20231225171514.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2020.3047808  |2 doi 
028 5 2 |a pubmed24n1064.xml 
035 |a (DE-627)NLM319467074 
035 |a (NLM)33382651 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Feng  |e verfasserin  |4 aut 
245 1 2 |a A Theoretical Model for Analyzing the Thickness-Shear Vibration of a Circular Quartz Crystal Plate With Multiple Concentric Ring Electrodes 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.04.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A dynamic model to analyze the thickness-shear vibration of a circular quartz crystal plate with multiple concentric ring electrodes on its upper and bottom surfaces is established with the aid of coordinate transformation. The theoretical solution is obtained, which can be written in a superposition form of Mathieu functions and modified Mathieu functions. The convergence of the solution is demonstrated, and the correctness is numerically validated via results from the finite element method (FEM). Subsequently, a systematic investigation is carried out to quantify the effect of the electrode size on the energy trapping phenomenon, i.e., the resonant frequency and mode shape, which reveals that the ring electrode has a great influence on the work performance of resonators. With the increase of the electrode inertia, i.e., the radius and mass ratio, new trapped modes emergence with the vibration mainly focused on the plate with partial electrodes. Besides, owing to the anisotropy, degenerated trapped modes have different resonant frequencies and the frequency discrepancy between them will become smaller for higher modes. Finally, the influence of multiple ring electrodes is investigated, and the qualitative analysis and quantitative results demonstrate that multiple ring electrodes will lead to a more uniform mass sensitivity compared with a single ring electrode. The outcome is widely applicable, which can provide theoretical guidance for the structural design and manufacturing of quartz resonators, as well as a thorough interpretation about the underlying physical mechanism 
650 4 |a Journal Article 
700 1 |a Li, Peng  |e verfasserin  |4 aut 
700 1 |a Dai, Xiaoyun  |e verfasserin  |4 aut 
700 1 |a Qian, Zhenghua  |e verfasserin  |4 aut 
700 1 |a Kuznetsova, Iren E  |e verfasserin  |4 aut 
700 1 |a Kolesov, Vladimir  |e verfasserin  |4 aut 
700 1 |a Ma, Tingfeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 68(2021), 5 vom: 05. Mai, Seite 1808-1818  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnns 
773 1 8 |g volume:68  |g year:2021  |g number:5  |g day:05  |g month:05  |g pages:1808-1818 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2020.3047808  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 68  |j 2021  |e 5  |b 05  |c 05  |h 1808-1818