Study of Active Janus Particles in the Presence of an Engineered Oil-Water Interface
We present a systematic study of motion of PtSiO2 Janus particles at a liquid-liquid interface. A special microfluidic trap is used for creating such an interface. The increased surface energy of the large surface results in partial wetting of the substrate, leaving patches of oil on the glass surfa...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 1 vom: 12. Jan., Seite 204-210 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | We present a systematic study of motion of PtSiO2 Janus particles at a liquid-liquid interface. A special microfluidic trap is used for creating such an interface. The increased surface energy of the large surface results in partial wetting of the substrate, leaving patches of oil on the glass surface. This allows us to directly compare the motion at the two interfaces, i.e., oil-water and solid-water interface within the same setting, guaranteeing identical conditions in terms of additional parameters. The propulsion behavior of Janus particles is found to be quantitatively similar at both surfaces. The interplay of reaction product absorption by oil, slip locking by surfactant, microscale friction, lubrication efficiency, and potential Marangoni effect controls the resemblance of motion characteristics at the two interfaces. Additionally, we also observed guidance effect on the Janus particles by the pinning line of oil patches, similar to solid side walls |
---|---|
Beschreibung: | Date Revised 12.01.2021 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.0c02752 |