Mimicking Biosintering : The Identification of Highly Condensed Surfaces in Bioinspired Silica Materials

Interfacial interactions between inorganic surfaces and organic additives are vital to develop new complex nanomaterials. Learning from biosilica materials, composite nanostructures have been developed, which exploit the strength and directionality of specific polyamine additive-silica surface inter...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 37(2021), 1 vom: 12. Jan., Seite 561-568
1. Verfasser: Manning, Joseph R H (VerfasserIn)
Weitere Verfasser: Walkley, Brant, Provis, John L, Patwardhan, Siddharth V
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM319369633
003 DE-627
005 20231225171313.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.0c03261  |2 doi 
028 5 2 |a pubmed24n1064.xml 
035 |a (DE-627)NLM319369633 
035 |a (NLM)33372796 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Manning, Joseph R H  |e verfasserin  |4 aut 
245 1 0 |a Mimicking Biosintering  |b The Identification of Highly Condensed Surfaces in Bioinspired Silica Materials 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.01.2021 
500 |a Date Revised 22.01.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Interfacial interactions between inorganic surfaces and organic additives are vital to develop new complex nanomaterials. Learning from biosilica materials, composite nanostructures have been developed, which exploit the strength and directionality of specific polyamine additive-silica surface interactions. Previous interpretations of these interactions are almost universally based on interfacial charge matching and/or hydrogen bonding. In this study, we analyzed the surface chemistry of bioinspired silica (BIS) materials using solid-state nuclear magnetic resonance (NMR) spectroscopy as a function of the organic additive concentration. We found significant additional association between the additives and fully condensed (Q4) silicon species compared to industrial silica materials, leading to more overall Q4 concentration and higher hydrothermal stability, despite BIS having a shorter synthesis time. We posit that the polyfunctionality and catalytic activity of additives in the BIS synthesis lead to both of these surface phenomena, contrasting previous studies on monofunctional surfactants used in most other artificial templated silica syntheses. From this, we propose that additive polyfunctionality can be used to generate tailored artificial surfaces in situ and provide insights into the process of biosintering in biosilica systems, highlighting the need for more in-depth simulations on interfacial interactions at silica surfaces 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Walkley, Brant  |e verfasserin  |4 aut 
700 1 |a Provis, John L  |e verfasserin  |4 aut 
700 1 |a Patwardhan, Siddharth V  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1999  |g 37(2021), 1 vom: 12. Jan., Seite 561-568  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:37  |g year:2021  |g number:1  |g day:12  |g month:01  |g pages:561-568 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.0c03261  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 37  |j 2021  |e 1  |b 12  |c 01  |h 561-568