An integrated feature frame work for automated segmentation of COVID-19 infection from lung CT images

© 2020 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:International journal of imaging systems and technology. - 1990. - 31(2021), 1 vom: 01. März, Seite 28-46
1. Verfasser: Selvaraj, Deepika (VerfasserIn)
Weitere Verfasser: Venkatesan, Arunachalam, Mahesh, Vijayalakshmi G V, Joseph Raj, Alex Noel
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:International journal of imaging systems and technology
Schlagworte:Journal Article Zernike moment artificial intelligence computed tomography image deep neural network feature extraction limited training points segmentation
LEADER 01000caa a22002652 4500
001 NLM319266478
003 DE-627
005 20240918231826.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/ima.22525  |2 doi 
028 5 2 |a pubmed24n1538.xml 
035 |a (DE-627)NLM319266478 
035 |a (NLM)33362346 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Selvaraj, Deepika  |e verfasserin  |4 aut 
245 1 3 |a An integrated feature frame work for automated segmentation of COVID-19 infection from lung CT images 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 18.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Wiley Periodicals LLC. 
520 |a The novel coronavirus disease (SARS-CoV-2 or COVID-19) is spreading across the world and is affecting public health and the world economy. Artificial Intelligence (AI) can play a key role in enhancing COVID-19 detection. However, lung infection by COVID-19 is not quantifiable due to a lack of studies and the difficulty involved in the collection of large datasets. Segmentation is a preferred technique to quantify and contour the COVID-19 region on the lungs using computed tomography (CT) scan images. To address the dataset problem, we propose a deep neural network (DNN) model trained on a limited dataset where features are selected using a region-specific approach. Specifically, we apply the Zernike moment (ZM) and gray level co-occurrence matrix (GLCM) to extract the unique shape and texture features. The feature vectors computed from these techniques enable segmentation that illustrates the severity of the COVID-19 infection. The proposed algorithm was compared with other existing state-of-the-art deep neural networks using the Radiopedia and COVID-19 CT Segmentation datasets presented specificity, sensitivity, sensitivity, mean absolute error (MAE), enhance-alignment measure (EMφ), and structure measure (S m) of 0.942, 0.701, 0.082, 0.867, and 0.783, respectively. The metrics demonstrate the performance of the model in quantifying the COVID-19 infection with limited datasets 
650 4 |a Journal Article 
650 4 |a Zernike moment 
650 4 |a artificial intelligence 
650 4 |a computed tomography image 
650 4 |a deep neural network 
650 4 |a feature extraction 
650 4 |a limited training points 
650 4 |a segmentation 
700 1 |a Venkatesan, Arunachalam  |e verfasserin  |4 aut 
700 1 |a Mahesh, Vijayalakshmi G V  |e verfasserin  |4 aut 
700 1 |a Joseph Raj, Alex Noel  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t International journal of imaging systems and technology  |d 1990  |g 31(2021), 1 vom: 01. März, Seite 28-46  |w (DE-627)NLM098193090  |x 0899-9457  |7 nnns 
773 1 8 |g volume:31  |g year:2021  |g number:1  |g day:01  |g month:03  |g pages:28-46 
856 4 0 |u http://dx.doi.org/10.1002/ima.22525  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2021  |e 1  |b 01  |c 03  |h 28-46