Automatic COVID-19 CT segmentation using U-Net integrated spatial and channel attention mechanism

© 2020 Wiley Periodicals LLC.

Détails bibliographiques
Publié dans:International journal of imaging systems and technology. - 1998. - 31(2021), 1 vom: 24. März, Seite 16-27
Auteur principal: Zhou, Tongxue (Auteur)
Autres auteurs: Canu, Stéphane, Ruan, Su
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:International journal of imaging systems and technology
Sujets:Journal Article COVID‐19 CT attention mechanism deep learning focal tversky loss segmentation
LEADER 01000caa a22002652c 4500
001 NLM31926646X
003 DE-627
005 20250228151010.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/ima.22527  |2 doi 
028 5 2 |a pubmed25n1064.xml 
035 |a (DE-627)NLM31926646X 
035 |a (NLM)33362345 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Tongxue  |e verfasserin  |4 aut 
245 1 0 |a Automatic COVID-19 CT segmentation using U-Net integrated spatial and channel attention mechanism 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Wiley Periodicals LLC. 
520 |a The coronavirus disease (COVID-19) pandemic has led to a devastating effect on the global public health. Computed Tomography (CT) is an effective tool in the screening of COVID-19. It is of great importance to rapidly and accurately segment COVID-19 from CT to help diagnostic and patient monitoring. In this paper, we propose a U-Net based segmentation network using attention mechanism. As not all the features extracted from the encoders are useful for segmentation, we propose to incorporate an attention mechanism including a spatial attention module and a channel attention module, to a U-Net architecture to re-weight the feature representation spatially and channel-wise to capture rich contextual relationships for better feature representation. In addition, the focal Tversky loss is introduced to deal with small lesion segmentation. The experiment results, evaluated on a COVID-19 CT segmentation dataset where 473 CT slices are available, demonstrate the proposed method can achieve an accurate and rapid segmentation result on COVID-19. The method takes only 0.29 second to segment a single CT slice. The obtained Dice Score and Hausdorff Distance are 83.1% and 18.8, respectively 
650 4 |a Journal Article 
650 4 |a COVID‐19 
650 4 |a CT 
650 4 |a attention mechanism 
650 4 |a deep learning 
650 4 |a focal tversky loss 
650 4 |a segmentation 
700 1 |a Canu, Stéphane  |e verfasserin  |4 aut 
700 1 |a Ruan, Su  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t International journal of imaging systems and technology  |d 1998  |g 31(2021), 1 vom: 24. März, Seite 16-27  |w (DE-627)NLM098193090  |x 0899-9457  |7 nnas 
773 1 8 |g volume:31  |g year:2021  |g number:1  |g day:24  |g month:03  |g pages:16-27 
856 4 0 |u http://dx.doi.org/10.1002/ima.22527  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2021  |e 1  |b 24  |c 03  |h 16-27