Fast Multi-View Clustering via Nonnegative and Orthogonal Factorization

The rapid growth of the number of data brings great challenges to clustering, especially the introduction of multi-view data, which collected from multiple sources or represented by multiple features, makes these challenges more arduous. How to clustering large-scale data efficiently has become the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 15., Seite 2575-2586
1. Verfasser: Yang, Ben (VerfasserIn)
Weitere Verfasser: Zhang, Xuetao, Nie, Feiping, Wang, Fei, Yu, Weizhong, Wang, Rong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM319253201
003 DE-627
005 20231225171049.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.3045631  |2 doi 
028 5 2 |a pubmed24n1064.xml 
035 |a (DE-627)NLM319253201 
035 |a (NLM)33360992 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Ben  |e verfasserin  |4 aut 
245 1 0 |a Fast Multi-View Clustering via Nonnegative and Orthogonal Factorization 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.02.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The rapid growth of the number of data brings great challenges to clustering, especially the introduction of multi-view data, which collected from multiple sources or represented by multiple features, makes these challenges more arduous. How to clustering large-scale data efficiently has become the hottest topic of current large-scale clustering tasks. Although several accelerated multi-view methods have been proposed to improve the efficiency of clustering large-scale data, they still cannot be applied to some scenarios that require high efficiency because of the high computational complexity. To cope with the issue of high computational complexity of existing multi-view methods when dealing with large-scale data, a fast multi-view clustering model via nonnegative and orthogonal factorization (FMCNOF) is proposed in this paper. Instead of constraining the factor matrices to be nonnegative as traditional nonnegative and orthogonal factorization (NOF), we constrain a factor matrix of this model to be cluster indicator matrix which can assign cluster labels to data directly without extra post-processing step to extract cluster structures from the factor matrix. Meanwhile, the F-norm instead of the L2-norm is utilized on the FMCNOF model, which makes the model very easy to optimize. Furthermore, an efficient optimization algorithm is proposed to solve the FMCNOF model. Different from the traditional NOF optimization algorithm requiring dense matrix multiplications, our algorithm can divide the optimization problem into three decoupled small size subproblems that can be solved by much less matrix multiplications. Combined with the FMCNOF model and the corresponding fast optimization method, the efficiency of the clustering process can be significantly improved, and the computational complexity is nearly O(n) . Extensive experiments on various benchmark data sets validate our approach can greatly improve the efficiency when achieve acceptable performance 
650 4 |a Journal Article 
700 1 |a Zhang, Xuetao  |e verfasserin  |4 aut 
700 1 |a Nie, Feiping  |e verfasserin  |4 aut 
700 1 |a Wang, Fei  |e verfasserin  |4 aut 
700 1 |a Yu, Weizhong  |e verfasserin  |4 aut 
700 1 |a Wang, Rong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 15., Seite 2575-2586  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:15  |g pages:2575-2586 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.3045631  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 15  |h 2575-2586