Inferring Point Cloud Quality via Graph Similarity

Objective quality estimation of media content plays a vital role in a wide range of applications. Though numerous metrics exist for 2D images and videos, similar metrics are missing for 3D point clouds with unstructured and non-uniformly distributed points. In this paper, we propose [Formula: see te...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 6 vom: 15. Juni, Seite 3015-3029
1. Verfasser: Yang, Qi (VerfasserIn)
Weitere Verfasser: Ma, Zhan, Xu, Yiling, Li, Zhu, Sun, Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM319253112
003 DE-627
005 20231225171048.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3047083  |2 doi 
028 5 2 |a pubmed24n1064.xml 
035 |a (DE-627)NLM319253112 
035 |a (NLM)33360982 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Qi  |e verfasserin  |4 aut 
245 1 0 |a Inferring Point Cloud Quality via Graph Similarity 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.05.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Objective quality estimation of media content plays a vital role in a wide range of applications. Though numerous metrics exist for 2D images and videos, similar metrics are missing for 3D point clouds with unstructured and non-uniformly distributed points. In this paper, we propose [Formula: see text]-a metric to accurately and quantitatively predict the human perception of point cloud with superimposed geometry and color impairments. Human vision system is more sensitive to the high spatial-frequency components (e.g., contours and edges), and weighs local structural variations more than individual point intensities. Motivated by this fact, we use graph signal gradient as a quality index to evaluate point cloud distortions. Specifically, we first extract geometric keypoints by resampling the reference point cloud geometry information to form an object skeleton. Then, we construct local graphs centered at these keypoints for both reference and distorted point clouds. Next, we compute three moments of color gradients between centered keypoint and all other points in the same local graph for local significance similarity feature. Finally, we obtain similarity index by pooling the local graph significance across all color channels and averaging across all graphs. We evaluate [Formula: see text] on two large and independent point cloud assessment datasets that involve a wide range of impairments (e.g., re-sampling, compression, and additive noise). [Formula: see text] provides state-of-the-art performance for all distortions with noticeable gains in predicting the subjective mean opinion score (MOS) in comparison with point-wise distance-based metrics adopted in standardized reference software. Ablation studies further show that [Formula: see text] can be generalized to various scenarios with consistent performance by adjusting its key modules and parameters. Models and associated materials will be made available at https://njuvision.github.io/GraphSIM or http://smt.sjtu.edu.cn/papers/GraphSIM 
650 4 |a Journal Article 
700 1 |a Ma, Zhan  |e verfasserin  |4 aut 
700 1 |a Xu, Yiling  |e verfasserin  |4 aut 
700 1 |a Li, Zhu  |e verfasserin  |4 aut 
700 1 |a Sun, Jun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 6 vom: 15. Juni, Seite 3015-3029  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:6  |g day:15  |g month:06  |g pages:3015-3029 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3047083  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 6  |b 15  |c 06  |h 3015-3029