SG-Net : Syntax Guided Transformer for Language Representation

Understanding human language is one of the key themes of artificial intelligence. For language representation, the capacity of effectively modeling the linguistic knowledge from the detail-riddled and lengthy texts and getting ride of the noises is essential to improve its performance. Traditional a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 6 vom: 22. Juni, Seite 3285-3299
1. Verfasser: Zhang, Zhuosheng (VerfasserIn)
Weitere Verfasser: Wu, Yuwei, Zhou, Junru, Duan, Sufeng, Zhao, Hai, Wang, Rui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM319162818
003 DE-627
005 20231225170850.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3046683  |2 doi 
028 5 2 |a pubmed24n1063.xml 
035 |a (DE-627)NLM319162818 
035 |a (NLM)33351752 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Zhuosheng  |e verfasserin  |4 aut 
245 1 0 |a SG-Net  |b Syntax Guided Transformer for Language Representation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.05.2022 
500 |a Date Revised 09.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Understanding human language is one of the key themes of artificial intelligence. For language representation, the capacity of effectively modeling the linguistic knowledge from the detail-riddled and lengthy texts and getting ride of the noises is essential to improve its performance. Traditional attentive models attend to all words without explicit constraint, which results in inaccurate concentration on some dispensable words. In this work, we propose using syntax to guide the text modeling by incorporating explicit syntactic constraints into attention mechanisms for better linguistically motivated word representations. In detail, for self-attention network (SAN) sponsored Transformer-based encoder, we introduce syntactic dependency of interest (SDOI) design into the SAN to form an SDOI-SAN with syntax-guided self-attention. Syntax-guided network (SG-Net) is then composed of this extra SDOI-SAN and the SAN from the original Transformer encoder through a dual contextual architecture for better linguistics inspired representation. The proposed SG-Net is applied to typical Transformer encoders. Extensive experiments on popular benchmark tasks, including machine reading comprehension, natural language inference, and neural machine translation show the effectiveness of the proposed SG-Net design 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wu, Yuwei  |e verfasserin  |4 aut 
700 1 |a Zhou, Junru  |e verfasserin  |4 aut 
700 1 |a Duan, Sufeng  |e verfasserin  |4 aut 
700 1 |a Zhao, Hai  |e verfasserin  |4 aut 
700 1 |a Wang, Rui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 6 vom: 22. Juni, Seite 3285-3299  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:6  |g day:22  |g month:06  |g pages:3285-3299 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3046683  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 6  |b 22  |c 06  |h 3285-3299