Ab initio effective one-electron potential operators : Applications for charge-transfer energy in effective fragment potentials

© 2020 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 42(2021), 6 vom: 05. März, Seite 398-411
1. Verfasser: Błasiak, Bartosz (VerfasserIn)
Weitere Verfasser: Bednarska, Joanna D, Chołuj, Marta, Góra, Robert W, Bartkowiak, Wojciech
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article ab initio force field charge-transfer effective fragment electron repulsion integral one-electron potential
LEADER 01000naa a22002652 4500
001 NLM319145476
003 DE-627
005 20231225170829.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.26462  |2 doi 
028 5 2 |a pubmed24n1063.xml 
035 |a (DE-627)NLM319145476 
035 |a (NLM)33349929 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Błasiak, Bartosz  |e verfasserin  |4 aut 
245 1 0 |a Ab initio effective one-electron potential operators  |b Applications for charge-transfer energy in effective fragment potentials 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.01.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Wiley Periodicals LLC. 
520 |a The concept of effective one-electron potentials (EOPs) has proven to be extremely useful in efficient description of electronic structure of chemical systems, especially extended molecular aggregates such as interacting molecules in condensed phases. Here, a general method for EOP-based elimination of electron repulsion integrals is presented, that is tuned toward the fragment-based calculation methodologies such as the second generation of the effective fragment potentials (EFP2) method. Two general types of the EOP operator matrix elements are distinguished and treated either via the distributed multipole expansion or the extended density fitting (DF) schemes developed in this work. The EOP technique is then applied to reduce the high computational costs of the effective fragment charge-transfer (CT) terms being the bottleneck of EFP2 potentials. The alternative EOP-based CT energy model is proposed, derived within the framework of intermolecular perturbation theory with Hartree-Fock noninteracting reference wavefunctions, compatible with the original EFP2 formulation. It is found that the computational cost of the EFP2 total interaction energy calculation can be reduced by up to 38 times when using the EOP-based formulation of CT energy, as compared to the original EFP2 scheme, without compromising the accuracy for a wide range of weakly interacting neutral and ionic molecular fragments. The proposed model can thus be used routinely within the EFP2 framework 
650 4 |a Journal Article 
650 4 |a ab initio force field 
650 4 |a charge-transfer 
650 4 |a effective fragment 
650 4 |a electron repulsion integral 
650 4 |a one-electron potential 
700 1 |a Bednarska, Joanna D  |e verfasserin  |4 aut 
700 1 |a Chołuj, Marta  |e verfasserin  |4 aut 
700 1 |a Góra, Robert W  |e verfasserin  |4 aut 
700 1 |a Bartkowiak, Wojciech  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 42(2021), 6 vom: 05. März, Seite 398-411  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:42  |g year:2021  |g number:6  |g day:05  |g month:03  |g pages:398-411 
856 4 0 |u http://dx.doi.org/10.1002/jcc.26462  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2021  |e 6  |b 05  |c 03  |h 398-411