A diagonalization-free optimization algorithm for solving Kohn-Sham equations of closed-shell molecules

© 2020 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 42(2021), 7 vom: 15. März, Seite 492-504
1. Verfasser: Mrovec, Martin (VerfasserIn)
Weitere Verfasser: Berger, J A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Grassmann manifold Kohn-Sham equations constrained optimization local minimizer tangent set projection
LEADER 01000naa a22002652 4500
001 NLM319122859
003 DE-627
005 20231225170801.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.26472  |2 doi 
028 5 2 |a pubmed24n1063.xml 
035 |a (DE-627)NLM319122859 
035 |a (NLM)33347643 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mrovec, Martin  |e verfasserin  |4 aut 
245 1 2 |a A diagonalization-free optimization algorithm for solving Kohn-Sham equations of closed-shell molecules 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 29.01.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Wiley Periodicals LLC. 
520 |a A local optimization algorithm for solving the Kohn-Sham equations is presented. It is based on a direct minimization of the energy functional under the equality constraints representing the Grassmann Manifold. The algorithm does not require an eigendecomposition, which may be advantageous in large-scale computations. It is optimized to reduce the number of Kohn-Sham matrix evaluations to one per iteration to be competitive with standard self-consistent field (SCF) approach accelerated by direct inversion of the iterative subspace (DIIS). Numerical experiments include a comparison of the algorithm with DIIS. A high reliability of the algorithm is observed in configurations where SCF iterations fail to converge or find a wrong solution corresponding to a stationary point different from the global minimum. The local optimization algorithm itself does not guarantee that the found minimum is global. However, a randomization of the initial approximation shows a convergence to the right minimum in the vast majority of cases 
650 4 |a Journal Article 
650 4 |a Grassmann manifold 
650 4 |a Kohn-Sham equations 
650 4 |a constrained optimization 
650 4 |a local minimizer 
650 4 |a tangent set projection 
700 1 |a Berger, J A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 42(2021), 7 vom: 15. März, Seite 492-504  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:42  |g year:2021  |g number:7  |g day:15  |g month:03  |g pages:492-504 
856 4 0 |u http://dx.doi.org/10.1002/jcc.26472  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2021  |e 7  |b 15  |c 03  |h 492-504