AMP-Net : Denoising-Based Deep Unfolding for Compressive Image Sensing

Most compressive sensing (CS) reconstruction methods can be divided into two categories, i.e. model-based methods and classical deep network methods. By unfolding the iterative optimization algorithm for model-based methods onto networks, deep unfolding methods have the good interpretation of model-...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 18., Seite 1487-1500
1. Verfasser: Zhang, Zhonghao (VerfasserIn)
Weitere Verfasser: Liu, Yipeng, Liu, Jiani, Wen, Fei, Zhu, Ce
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM319029433
003 DE-627
005 20231225170606.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.3044472  |2 doi 
028 5 2 |a pubmed24n1063.xml 
035 |a (DE-627)NLM319029433 
035 |a (NLM)33338019 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Zhonghao  |e verfasserin  |4 aut 
245 1 0 |a AMP-Net  |b Denoising-Based Deep Unfolding for Compressive Image Sensing 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.01.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Most compressive sensing (CS) reconstruction methods can be divided into two categories, i.e. model-based methods and classical deep network methods. By unfolding the iterative optimization algorithm for model-based methods onto networks, deep unfolding methods have the good interpretation of model-based methods and the high speed of classical deep network methods. In this article, to solve the visual image CS problem, we propose a deep unfolding model dubbed AMP-Net. Rather than learning regularization terms, it is established by unfolding the iterative denoising process of the well-known approximate message passing algorithm. Furthermore, AMP-Net integrates deblocking modules in order to eliminate the blocking artifacts that usually appear in CS of visual images. In addition, the sampling matrix is jointly trained with other network parameters to enhance the reconstruction performance. Experimental results show that the proposed AMP-Net has better reconstruction accuracy than other state-of-the-art methods with high reconstruction speed and a small number of network parameters 
650 4 |a Journal Article 
700 1 |a Liu, Yipeng  |e verfasserin  |4 aut 
700 1 |a Liu, Jiani  |e verfasserin  |4 aut 
700 1 |a Wen, Fei  |e verfasserin  |4 aut 
700 1 |a Zhu, Ce  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 18., Seite 1487-1500  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:18  |g pages:1487-1500 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.3044472  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 18  |h 1487-1500