Rice transcription factor MADS32 regulates floral patterning through interactions with multiple floral homeotic genes

© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 72(2021), 7 vom: 29. März, Seite 2434-2449
1. Verfasser: Hu, Yun (VerfasserIn)
Weitere Verfasser: Wang, Li, Jia, Ru, Liang, Wanqi, Zhang, Xuelian, Xu, Jie, Chen, Xiaofei, Lu, Dan, Chen, Mingjiao, Luo, Zhijing, Xie, Jiayang, Cao, Liming, Xu, Ben, Yu, Yu, Persson, Staffan, Zhang, Dabing, Yuan, Zheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Floral meristem activity MADS-box transcription factors OsMADS32 protein interaction rice MADS Domain Proteins Plant Proteins Transcription Factors
Beschreibung
Zusammenfassung:© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Floral patterning is regulated by intricate networks of floral identity genes. The peculiar MADS32 subfamily genes, absent in eudicots but prevalent in monocots, control floral organ identity. However, how the MADS32 family genes interact with other floral homeotic genes during flower development is mostly unknown. We show here that the rice homeotic transcription factor OsMADS32 regulates floral patterning by interacting synergistically with E class protein OsMADS6 in a dosage-dependent manner. Furthermore, our results indicate important roles for OsMADS32 in defining stamen, pistil, and ovule development through physical and genetic interactions with OsMADS1, OsMADS58, and OsMADS13, and in specifying floral meristem identity with OsMADS6, OsMADS3, and OsMADS58, respectively. Our findings suggest that OsMADS32 is an important factor for floral meristem identity maintenance and that it integrates the action of other MADS-box homeotic proteins to sustain floral organ specification and development in rice. Given that OsMADS32 is an orphan gene and absent in eudicots, our data substantially expand our understanding of flower development in plants
Beschreibung:Date Completed 21.05.2021
Date Revised 31.05.2022
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/eraa588