Generative VoxelNet : Learning Energy-Based Models for 3D Shape Synthesis and Analysis
3D data that contains rich geometry information of objects and scenes is valuable for understanding 3D physical world. With the recent emergence of large-scale 3D datasets, it becomes increasingly crucial to have a powerful 3D generative model for 3D shape synthesis and analysis. This paper proposes...
Ausführliche Beschreibung
Bibliographische Detailangaben
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 5 vom: 15. Mai, Seite 2468-2484
|
1. Verfasser: |
Xie, Jianwen
(VerfasserIn) |
Weitere Verfasser: |
Zheng, Zilong,
Gao, Ruiqi,
Wang, Wenguan,
Zhu, Song-Chun,
Wu, Ying Nian |
Format: | Online-Aufsatz
|
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence
|
Schlagworte: | Journal Article |