Geometry-Aware Generation of Adversarial Point Clouds

Machine learning models have been shown to be vulnerable to adversarial examples. While most of the existing methods for adversarial attack and defense work on the 2D image domain, a few recent attempts have been made to extend them to 3D point cloud data. However, adversarial results obtained by th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 6 vom: 15. Juni, Seite 2984-2999
1. Verfasser: Wen, Yuxin (VerfasserIn)
Weitere Verfasser: Lin, Jiehong, Chen, Ke, Chen, C L Philip, Jia, Kui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM318859521
003 DE-627
005 20231225170234.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3044712  |2 doi 
028 5 2 |a pubmed24n1062.xml 
035 |a (DE-627)NLM318859521 
035 |a (NLM)33320808 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wen, Yuxin  |e verfasserin  |4 aut 
245 1 0 |a Geometry-Aware Generation of Adversarial Point Clouds 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.05.2022 
500 |a Date Revised 09.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Machine learning models have been shown to be vulnerable to adversarial examples. While most of the existing methods for adversarial attack and defense work on the 2D image domain, a few recent attempts have been made to extend them to 3D point cloud data. However, adversarial results obtained by these methods typically contain point outliers, which are both noticeable and easy to defend against using the simple techniques of outlier removal. Motivated by the different mechanisms by which humans perceive 2D images and 3D shapes, in this paper we propose the new design of geometry-aware objectives, whose solutions favor (the discrete versions of) the desired surface properties of smoothness and fairness. To generate adversarial point clouds, we use a targeted attack misclassification loss that supports continuous pursuit of increasingly malicious signals. Regularizing the targeted attack loss with our proposed geometry-aware objectives results in our proposed method, Geometry-Aware Adversarial Attack ( GeoA3). The results of GeoA3 tend to be more harmful, arguably harder to defend against, and of the key adversarial characterization of being imperceptible to humans. While the main focus of this paper is to learn to generate adversarial point clouds, we also present a simple but effective algorithm termed Geo+A3-IterNormPro, with Iterative Normal Projection (IterNorPro) that solves a new objective function Geo+A3, towards surface-level adversarial attacks via generation of adversarial point clouds. We quantitatively evaluate our methods on both synthetic and physical objects in terms of attack success rate and geometric regularity. For a qualitative evaluation, we conduct subjective studies by collecting human preferences from Amazon Mechanical Turk. Comparative results in comprehensive experiments confirm the advantages of our proposed methods. Our source codes are publicly available at https://github.com/Yuxin-Wen/GeoA3 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Lin, Jiehong  |e verfasserin  |4 aut 
700 1 |a Chen, Ke  |e verfasserin  |4 aut 
700 1 |a Chen, C L Philip  |e verfasserin  |4 aut 
700 1 |a Jia, Kui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 6 vom: 15. Juni, Seite 2984-2999  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:6  |g day:15  |g month:06  |g pages:2984-2999 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3044712  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 6  |b 15  |c 06  |h 2984-2999