Strong Ferromagnetism Achieved via Breathing Lattices in Atomically Thin Cobaltites

© 2020 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 4 vom: 15. Jan., Seite e2001324
1. Verfasser: Li, Sisi (VerfasserIn)
Weitere Verfasser: Zhang, Qinghua, Lin, Shan, Sang, Xiahan, Need, Ryan F, Roldan, Manuel A, Cui, Wenjun, Hu, Zhiyi, Jin, Qiao, Chen, Shuang, Zhao, Jiali, Wang, Jia-Ou, Wang, Jiesu, He, Meng, Ge, Chen, Wang, Can, Lu, Hui-Bin, Wu, Zhenping, Guo, Haizhong, Tong, Xin, Zhu, Tao, Kirby, Brian, Gu, Lin, Jin, Kui-Juan, Guo, Er-Jia
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article complex oxide superlattices ferromagnetism polarized neutron reflectometry spintronics
Beschreibung
Zusammenfassung:© 2020 Wiley-VCH GmbH.
Low-dimensional quantum materials that remain strongly ferromagnetic down to monolayer thickness are highly desired for spintronic applications. Although oxide materials are important candidates for the next generation of spintronics, ferromagnetism decays severely when the thickness is scaled to the nanometer regime, leading to deterioration of device performance. Here, a methodology is reported for maintaining strong ferromagnetism in insulating LaCoO3 (LCO) layers down to the thickness of a single unit cell. It is found that the magnetic and electronic states of LCO are linked intimately to the structural parameters of adjacent "breathing lattice" SrCuO2 (SCO). As the dimensionality of SCO is reduced, the lattice constant elongates over 10% along the growth direction, leading to a significant distortion of the CoO6 octahedra, and promoting a higher spin state and long-range spin ordering. For atomically thin LCO layers, surprisingly large magnetic moment (0.5 μB /Co) and Curie temperature (75 K), values larger than previously reported for any monolayer oxides are observed. The results demonstrate a strategy for creating ultrathin ferromagnetic oxides by exploiting atomic heterointerface engineering, confinement-driven structural transformation, and spin-lattice entanglement in strongly correlated materials
Beschreibung:Date Revised 22.02.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202001324