Quantum Chemical Study of the Carbon Dioxide-Philicity of Surfactants : Effects of Tail Functionalization

Carbon dioxide (CO2)-philic surfactants have broad application prospects in organic synthesis, fracture-enhanced oil recovery, polymerization, extraction, and other fields and can be used to enhance the viscosity of supercritical CO2 (scCO2). In this work, the relationship between the functional gro...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 36(2020), 50 vom: 22. Dez., Seite 15352-15361
1. Verfasser: Zhang, Yingnan (VerfasserIn)
Weitere Verfasser: Li, Jiawei, Yin, Zhipeng, Zhang, Jun, Guo, Wenyue, Wang, Muhan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Carbon dioxide (CO2)-philic surfactants have broad application prospects in organic synthesis, fracture-enhanced oil recovery, polymerization, extraction, and other fields and can be used to enhance the viscosity of supercritical CO2 (scCO2). In this work, the relationship between the functional group of the surfactant tail and CO2-philicity is studied from a new perspective using density functional theory. Three common functional group types (fluorinated, oxidative, and methyl groups) were investigated. The analysis of binding energy demonstrates that all three types of functional groups can improve the CO2-philicity of the surfactant. Among these three kinds of functional groups, the strongest interaction with CO2 molecules is observed for oxidative functional groups followed by semifluorinated, fluorinated, and methyl groups. However, the CO2 molecules tend to be adsorbed onto the middle segment of the oxidative group, and the intrusion of the CO2 molecules results in the low solubility of oxidative surfactants. In contrast, fluorinated and methyl groups interact with CO2 at the end of the surfactant tail. As a result, the fluorinated surfactants show the best solubility in CO2. Therefore, the solubility of a surfactant in CO2 is not only related to the interaction strength between the surfactant and CO2, it also depends on the interaction structure. The results of this study provide a new strategy for evaluating surfactant CO2-philicity and provide guidance for the design of surfactants with high solubility in scCO2
Beschreibung:Date Revised 22.12.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.0c02789