Imma Sort by Two or More Attributes With Interpretable Monotonic Multi-Attribute Sorting

Many choice problems often involve multiple attributes which are mentally challenging, because only one attribute is neatly sorted while others could be randomly arranged. We hypothesize that perceiving approximately monotonic trends across multiple attributes is key to the overall interpretability...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 27(2021), 4 vom: 01. Apr., Seite 2369-2384
1. Verfasser: Lyu, Yan (VerfasserIn)
Weitere Verfasser: Gao, Fan, Wu, I-Shuen, Lim, Brian Y
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM318617811
003 DE-627
005 20231225165728.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2020.3043487  |2 doi 
028 5 2 |a pubmed24n1062.xml 
035 |a (DE-627)NLM318617811 
035 |a (NLM)33296304 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lyu, Yan  |e verfasserin  |4 aut 
245 1 0 |a Imma Sort by Two or More Attributes With Interpretable Monotonic Multi-Attribute Sorting 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Many choice problems often involve multiple attributes which are mentally challenging, because only one attribute is neatly sorted while others could be randomly arranged. We hypothesize that perceiving approximately monotonic trends across multiple attributes is key to the overall interpretability of sorted results, because users can easily predict the attribute values of the next items. We extend a ranking principal curve model to tune monotonic trends in attributes and present Imma Sort to sort items by multiple attributes simultaneously by trading-off the monotonicity in the primary sorted attribute to increase the human predictability for other attributes. We characterize how it performs for varying attribute correlations, attribute preferences, list lengths and number of attributes. We further extend Imma Sort with ImmaAnchor and ImmaCenter to improve the learnability and efficiency to search sorted items with conflicting attributes. We demonstrate usage scenarios for two applications and evaluate its learnability, usability, interpretability, and user performance in prediction and search tasks. We find that Imma Sort improves the interpretability and satisfaction of sorting by ≥ 2 attributes. We discuss why, when, where, and how to deploy Imma Sort for real-world applications 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Gao, Fan  |e verfasserin  |4 aut 
700 1 |a Wu, I-Shuen  |e verfasserin  |4 aut 
700 1 |a Lim, Brian Y  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 27(2021), 4 vom: 01. Apr., Seite 2369-2384  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:4  |g day:01  |g month:04  |g pages:2369-2384 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2020.3043487  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 4  |b 01  |c 04  |h 2369-2384