Argus : Interactive a priori Power Analysis
A key challenge HCl researchers face when designing a controlled experiment is choosing the appropriate number of participants, or sample size. A priori power analysis examines the relationships among multiple parameters, including the complexity associated with human participants, e.g., order and f...
Veröffentlicht in: | IEEE transactions on visualization and computer graphics. - 1996. - 27(2021), 2 vom: 01. Feb., Seite 432-442 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on visualization and computer graphics |
Schlagworte: | Journal Article |
Zusammenfassung: | A key challenge HCl researchers face when designing a controlled experiment is choosing the appropriate number of participants, or sample size. A priori power analysis examines the relationships among multiple parameters, including the complexity associated with human participants, e.g., order and fatigue effects, to calculate the statistical power of a given experiment design. We created Argus, a tool that supports interactive exploration of statistical power: Researchers specify experiment design scenarios with varying confounds and effect sizes. Argus then simulates data and visualizes statistical power across these scenarios, which lets researchers interactively weigh various trade-offs and make informed decisions about sample size. We describe the design and implementation of Argus, a usage scenario designing a visualization experiment, and a think-aloud study |
---|---|
Beschreibung: | Date Revised 02.02.2021 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0506 |
DOI: | 10.1109/TVCG.2020.3028894 |