Argus : Interactive a priori Power Analysis

A key challenge HCl researchers face when designing a controlled experiment is choosing the appropriate number of participants, or sample size. A priori power analysis examines the relationships among multiple parameters, including the complexity associated with human participants, e.g., order and f...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 27(2021), 2 vom: 01. Feb., Seite 432-442
1. Verfasser: Wang, Xiaoyi (VerfasserIn)
Weitere Verfasser: Eiselmayer, Alexander, Mackay, Wendy E, Hornbaek, Kasper, Wacharamanotham, Chat
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:A key challenge HCl researchers face when designing a controlled experiment is choosing the appropriate number of participants, or sample size. A priori power analysis examines the relationships among multiple parameters, including the complexity associated with human participants, e.g., order and fatigue effects, to calculate the statistical power of a given experiment design. We created Argus, a tool that supports interactive exploration of statistical power: Researchers specify experiment design scenarios with varying confounds and effect sizes. Argus then simulates data and visualizes statistical power across these scenarios, which lets researchers interactively weigh various trade-offs and make informed decisions about sample size. We describe the design and implementation of Argus, a usage scenario designing a visualization experiment, and a think-aloud study
Beschreibung:Date Revised 02.02.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0506
DOI:10.1109/TVCG.2020.3028894