|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM318558475 |
003 |
DE-627 |
005 |
20231225165611.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2020.3042059
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1061.xml
|
035 |
|
|
|a (DE-627)NLM318558475
|
035 |
|
|
|a (NLM)33290218
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Yingqian
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Light Field Image Super-Resolution Using Deformable Convolution
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 15.12.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Light field (LF) cameras can record scenes from multiple perspectives, and thus introduce beneficial angular information for image super-resolution (SR). However, it is challenging to incorporate angular information due to disparities among LF images. In this paper, we propose a deformable convolution network (i.e., LF-DFnet) to handle the disparity problem for LF image SR. Specifically, we design an angular deformable alignment module (ADAM) for feature-level alignment. Based on ADAM, we further propose a collect-and-distribute approach to perform bidirectional alignment between the center-view feature and each side-view feature. Using our approach, angular information can be well incorporated and encoded into features of each view, which benefits the SR reconstruction of all LF images. Moreover, we develop a baseline-adjustable LF dataset to evaluate SR performance under different disparity variations. Experiments on both public and our self-developed datasets have demonstrated the superiority of our method. Our LF-DFnet can generate high-resolution images with more faithful details and achieve state-of-the-art reconstruction accuracy. Besides, our LF-DFnet is more robust to disparity variations, which has not been well addressed in literature
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Yang, Jungang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Longguang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ying, Xinyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Tianhao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a An, Wei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guo, Yulan
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 30(2021) vom: 01., Seite 1057-1071
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2021
|g day:01
|g pages:1057-1071
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2020.3042059
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2021
|b 01
|h 1057-1071
|