Light Field Image Super-Resolution Using Deformable Convolution

Light field (LF) cameras can record scenes from multiple perspectives, and thus introduce beneficial angular information for image super-resolution (SR). However, it is challenging to incorporate angular information due to disparities among LF images. In this paper, we propose a deformable convoluti...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 1057-1071
1. Verfasser: Wang, Yingqian (VerfasserIn)
Weitere Verfasser: Yang, Jungang, Wang, Longguang, Ying, Xinyi, Wu, Tianhao, An, Wei, Guo, Yulan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM318558475
003 DE-627
005 20231225165611.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.3042059  |2 doi 
028 5 2 |a pubmed24n1061.xml 
035 |a (DE-627)NLM318558475 
035 |a (NLM)33290218 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Yingqian  |e verfasserin  |4 aut 
245 1 0 |a Light Field Image Super-Resolution Using Deformable Convolution 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 15.12.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Light field (LF) cameras can record scenes from multiple perspectives, and thus introduce beneficial angular information for image super-resolution (SR). However, it is challenging to incorporate angular information due to disparities among LF images. In this paper, we propose a deformable convolution network (i.e., LF-DFnet) to handle the disparity problem for LF image SR. Specifically, we design an angular deformable alignment module (ADAM) for feature-level alignment. Based on ADAM, we further propose a collect-and-distribute approach to perform bidirectional alignment between the center-view feature and each side-view feature. Using our approach, angular information can be well incorporated and encoded into features of each view, which benefits the SR reconstruction of all LF images. Moreover, we develop a baseline-adjustable LF dataset to evaluate SR performance under different disparity variations. Experiments on both public and our self-developed datasets have demonstrated the superiority of our method. Our LF-DFnet can generate high-resolution images with more faithful details and achieve state-of-the-art reconstruction accuracy. Besides, our LF-DFnet is more robust to disparity variations, which has not been well addressed in literature 
650 4 |a Journal Article 
700 1 |a Yang, Jungang  |e verfasserin  |4 aut 
700 1 |a Wang, Longguang  |e verfasserin  |4 aut 
700 1 |a Ying, Xinyi  |e verfasserin  |4 aut 
700 1 |a Wu, Tianhao  |e verfasserin  |4 aut 
700 1 |a An, Wei  |e verfasserin  |4 aut 
700 1 |a Guo, Yulan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 1057-1071  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:1057-1071 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.3042059  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 1057-1071