Molecular Insights into Adhesion at a Buried Silica-Filled Silicone/Polyethylene Terephthalate Interface

Silicone adhesives are widely used in many important applications in aviation, automotive, construction, and electronics industries. The mixture of (3-glycidoxypropyl)trimethoxysilane (γ-GPS) and hydroxy-terminated dimethyl methylvinyl co-siloxanol (DMMVS) has been widely used as an adhesion promote...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 36(2020), 49 vom: 15. Dez., Seite 15128-15140
1. Verfasser: Lin, Ting (VerfasserIn)
Weitere Verfasser: Wu, Yuchen, Santos, Elizabeth, Chen, Xiaoyun, Ahn, Dongchan, Mohler, Carol, Chen, Zhan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Silicone adhesives are widely used in many important applications in aviation, automotive, construction, and electronics industries. The mixture of (3-glycidoxypropyl)trimethoxysilane (γ-GPS) and hydroxy-terminated dimethyl methylvinyl co-siloxanol (DMMVS) has been widely used as an adhesion promoter in silicone elastomers to enhance the adhesion between silicone and other materials including polymers. The interfacial molecular structures of silicone elastomers and the adhesion promotion mechanisms of a γ-GPS-DMMVS mixture in silicone without a filler or an adhesion catalyst (AC) have been extensively investigated using sum frequency generation (SFG) vibrational spectroscopy previously. In this research, SFG was applied to study interfacial structures of silicone elastomeric adhesives in the presence of a silica filler and/or a zirconium(IV) acetylacetonate adhesion catalyst at the silicone/polyethylene terephthalate (PET) interface in situ nondestructively to understand their individual and synergy effects. The interfacial structures obtained from the SFG study were correlated to the adhesion behavior to PET. The interfacial reactions of methoxy and epoxy groups of the adhesion promoter were found to play significant roles in enhancing the interfacial adhesion of the buried interface. This research provides an in-depth molecular-level understanding on the effects of a filler and an adhesion catalyst on the interfacial behavior of the adhesion promotion system for silicone elastomers as well as the related impact on adhesion
Beschreibung:Date Revised 15.12.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.0c02719