Cathodoluminescence of Ultrathin Twisted Ge1- x Snx S van der Waals Nanoribbon Waveguides

© 2020 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 3 vom: 20. Jan., Seite e2006649
1. Verfasser: Sutter, Peter (VerfasserIn)
Weitere Verfasser: Khorashad, Larousse Khosravi, Argyropoulos, Christos, Sutter, Eli
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article alloys excitons layered materials nanophotonics nanoribbons
LEADER 01000caa a22002652c 4500
001 NLM318492121
003 DE-627
005 20250228122221.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202006649  |2 doi 
028 5 2 |a pubmed25n1061.xml 
035 |a (DE-627)NLM318492121 
035 |a (NLM)33283337 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sutter, Peter  |e verfasserin  |4 aut 
245 1 0 |a Cathodoluminescence of Ultrathin Twisted Ge1- x Snx S van der Waals Nanoribbon Waveguides 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.02.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Wiley-VCH GmbH. 
520 |a Ultrathin van der Waals semiconductors have shown extraordinary optoelectronic and photonic properties. Propagating photonic modes make layered crystal waveguides attractive for photonic circuitry and for studying hybrid light-matter states. Accessing guided modes by conventional optics is challenging due to the limited spatial resolution and poor out-of-plane far-field coupling. Scanning near-field optical microscopy can overcome these issues and can characterize waveguide modes down to a resolution of tens of nanometers, albeit for planar samples or nanostructures with moderate height variations. Electron microscopy provides atomic-scale localization also for more complex geometries, and recent advances have extended the accessible excitations from interband transitions to phonons. Here, bottom-up synthesized layered semiconductor (Ge1- x Snx S) nanoribbons with an axial twist and deep subwavelength thickness are demonstrated as a platform for realizing waveguide modes, and cathodoluminescence spectroscopy is introduced as a tool to characterize them. Combined experiments and simulations show the excitation of guided modes by the electron beam and their efficient detection via photons emitted in the ribbon plane, which enables the measurement of key properties such as the evanescent field into the vacuum cladding with nanometer resolution. The results identify van der Waals waveguides operating in the infrared and highlight an electron-microscopy-based approach for probing complex-shaped nanophotonic structures 
650 4 |a Journal Article 
650 4 |a alloys 
650 4 |a excitons 
650 4 |a layered materials 
650 4 |a nanophotonics 
650 4 |a nanoribbons 
700 1 |a Khorashad, Larousse Khosravi  |e verfasserin  |4 aut 
700 1 |a Argyropoulos, Christos  |e verfasserin  |4 aut 
700 1 |a Sutter, Eli  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 33(2021), 3 vom: 20. Jan., Seite e2006649  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:33  |g year:2021  |g number:3  |g day:20  |g month:01  |g pages:e2006649 
856 4 0 |u http://dx.doi.org/10.1002/adma.202006649  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2021  |e 3  |b 20  |c 01  |h e2006649