Finding the Next Superhard Material through Ensemble Learning

© 2020 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 5 vom: 08. Feb., Seite e2005112
1. Verfasser: Zhang, Ziyan (VerfasserIn)
Weitere Verfasser: Mansouri Tehrani, Aria, Oliynyk, Anton O, Day, Blake, Brgoch, Jakoah
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Vickers hardness ensemble machine learning high-throughput screening
LEADER 01000naa a22002652 4500
001 NLM31840821X
003 DE-627
005 20231225165306.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202005112  |2 doi 
028 5 2 |a pubmed24n1061.xml 
035 |a (DE-627)NLM31840821X 
035 |a (NLM)33274804 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Ziyan  |e verfasserin  |4 aut 
245 1 0 |a Finding the Next Superhard Material through Ensemble Learning 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.02.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Wiley-VCH GmbH. 
520 |a An ensemble machine-learning method is demonstrated to be capable of finding superhard materials by directly predicting the load-dependent Vickers hardness based only on the chemical composition. A total of 1062 experimentally measured load-dependent Vickers hardness data are extracted from the literature and used to train a supervised machine-learning algorithm utilizing boosting, achieving excellent accuracy (R2  = 0.97). This new model is then tested by synthesizing and measuring the load-dependent hardness of several unreported disilicides and analyzing the predicted hardness of several classic superhard materials. The trained ensemble method is then employed to screen for superhard materials by examining more than 66 000 compounds in crystal structure databases, which show that 68 known materials have a Vickers hardness ≥40 GPa at 0.5 N (applied force) and only 10 exceed this mark at 5 N. The hardness model is then combined with the data-driven phase diagram generation tool to expand the limited number of reported high hardness compounds. Eleven ternary borocarbide phase spaces are studied, and more than ten thermodynamically favorable compositions with a hardness above 40 GPa (at 0.5 N) are identified, proving this ensemble model's ability to find previously unknown materials with outstanding mechanical properties 
650 4 |a Journal Article 
650 4 |a Vickers hardness 
650 4 |a ensemble machine learning 
650 4 |a high-throughput screening 
700 1 |a Mansouri Tehrani, Aria  |e verfasserin  |4 aut 
700 1 |a Oliynyk, Anton O  |e verfasserin  |4 aut 
700 1 |a Day, Blake  |e verfasserin  |4 aut 
700 1 |a Brgoch, Jakoah  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 33(2021), 5 vom: 08. Feb., Seite e2005112  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:33  |g year:2021  |g number:5  |g day:08  |g month:02  |g pages:e2005112 
856 4 0 |u http://dx.doi.org/10.1002/adma.202005112  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2021  |e 5  |b 08  |c 02  |h e2005112