A Scalable Optimization Mechanism for Pairwise Based Discrete Hashing

Maintaining the pairwise relationship among originally high-dimensional data into a low-dimensional binary space is a popular strategy to learn binary codes. One simple and intuitive method is to utilize two identical code matrices produced by hash functions to approximate a pairwise real label matr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 03., Seite 1130-1142
1. Verfasser: Shi, Xiaoshuang (VerfasserIn)
Weitere Verfasser: Xing, Fuyong, Zhang, Zizhao, Sapkota, Manish, Guo, Zhenhua, Yang, Lin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM318367114
003 DE-627
005 20231225165216.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.3040536  |2 doi 
028 5 2 |a pubmed24n1061.xml 
035 |a (DE-627)NLM318367114 
035 |a (NLM)33270563 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shi, Xiaoshuang  |e verfasserin  |4 aut 
245 1 2 |a A Scalable Optimization Mechanism for Pairwise Based Discrete Hashing 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.12.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Maintaining the pairwise relationship among originally high-dimensional data into a low-dimensional binary space is a popular strategy to learn binary codes. One simple and intuitive method is to utilize two identical code matrices produced by hash functions to approximate a pairwise real label matrix. However, the resulting quartic problem in term of hash functions is difficult to directly solve due to the non-convex and non-smooth nature of the objective. In this paper, unlike previous optimization methods using various relaxation strategies, we aim to directly solve the original quartic problem using a novel alternative optimization mechanism to linearize the quartic problem by introducing a linear regression model. Additionally, we find that gradually learning each batch of binary codes in a sequential mode, i.e. batch by batch, is greatly beneficial to the convergence of binary code learning. Based on this significant discovery and the proposed strategy, we introduce a scalable symmetric discrete hashing algorithm that gradually and smoothly updates each batch of binary codes. To further improve the smoothness, we also propose a greedy symmetric discrete hashing algorithm to update each bit of batch binary codes. Moreover, we extend the proposed optimization mechanism to solve the non-convex optimization problems for binary code learning in many other pairwise based hashing algorithms. Extensive experiments on benchmark single-label and multi-label databases demonstrate the superior performance of the proposed mechanism over recent state-of-the-art methods on two kinds of retrieval tasks: similarity and ranking order. The source codes are available on https://github.com/xsshi2015/Scalable-Pairwise-based-Discrete-Hashing 
650 4 |a Journal Article 
700 1 |a Xing, Fuyong  |e verfasserin  |4 aut 
700 1 |a Zhang, Zizhao  |e verfasserin  |4 aut 
700 1 |a Sapkota, Manish  |e verfasserin  |4 aut 
700 1 |a Guo, Zhenhua  |e verfasserin  |4 aut 
700 1 |a Yang, Lin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 03., Seite 1130-1142  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:03  |g pages:1130-1142 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.3040536  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 03  |h 1130-1142