Performance Limits of an Alternating Current Electroluminescent Device

© 2020 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 2 vom: 15. Jan., Seite e2005635
1. Verfasser: Wang, Vivian (VerfasserIn)
Weitere Verfasser: Zhao, Yingbo, Javey, Ali
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article alternating current carbon nanotubes electroluminescence light-emitting devices
LEADER 01000naa a22002652 4500
001 NLM318364573
003 DE-627
005 20231225165213.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202005635  |2 doi 
028 5 2 |a pubmed24n1061.xml 
035 |a (DE-627)NLM318364573 
035 |a (NLM)33270301 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Vivian  |e verfasserin  |4 aut 
245 1 0 |a Performance Limits of an Alternating Current Electroluminescent Device 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.01.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Wiley-VCH GmbH. 
520 |a The use of an alternating current (AC) voltage is a simple, versatile method of producing electroluminescence from generic emissive materials without the need for contact engineering. Recently, it was shown that AC-driven, capacitive electroluminescent devices with carbon nanotube network contacts can be used to generate and study electroluminescence from a variety of molecular materials emitting in the infrared-to-ultraviolet range. Here, performance trade-offs in these devices are studied through comprehensive device simulations and illustrative experiments, enhancing understanding of the mechanism and capability of electroluminescent devices based on alternating as opposed to direct current (DC) schemes. AC-driven electroluminescent devices can overcome several limitations of conventional DC-driven electroluminescent devices, including the requirement for proper alignment of material energy levels and the need to process emitting materials into uniform thin films. By simultaneously optimizing device geometry, driving parameters, and material characteristics, the performance of these devices can be tuned. Importantly, the turn-on voltage of AC-driven electroluminescent devices approaches the bandgap of the emitting material as the gate oxide thickness is scaled, and internally efficient electroluminescence can be achieved using low-mobility single-layer emitter films with varying thicknesses and energy barrier heights relative to the contact 
650 4 |a Journal Article 
650 4 |a alternating current 
650 4 |a carbon nanotubes 
650 4 |a electroluminescence 
650 4 |a light-emitting devices 
700 1 |a Zhao, Yingbo  |e verfasserin  |4 aut 
700 1 |a Javey, Ali  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 33(2021), 2 vom: 15. Jan., Seite e2005635  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:33  |g year:2021  |g number:2  |g day:15  |g month:01  |g pages:e2005635 
856 4 0 |u http://dx.doi.org/10.1002/adma.202005635  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2021  |e 2  |b 15  |c 01  |h e2005635