Ultra High Fidelity Deep Image Decompression With l∞-Constrained Compression

We propose a novel asymmetric image compression system of light l∞ -constrained predictive encoding and heavy-duty CNN-based soft decoding. The system achieves superior rate-distortion performances over the best of existing image compression methods, including BPG, WebP, FLIF and recent CNN codecs,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 02., Seite 963-975
1. Verfasser: Zhang, Xi (VerfasserIn)
Weitere Verfasser: Wu, Xiaolin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM318303051
003 DE-627
005 20231225165053.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.3040074  |2 doi 
028 5 2 |a pubmed24n1060.xml 
035 |a (DE-627)NLM318303051 
035 |a (NLM)33264093 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Xi  |e verfasserin  |4 aut 
245 1 0 |a Ultra High Fidelity Deep Image Decompression With l∞-Constrained Compression 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.12.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose a novel asymmetric image compression system of light l∞ -constrained predictive encoding and heavy-duty CNN-based soft decoding. The system achieves superior rate-distortion performances over the best of existing image compression methods, including BPG, WebP, FLIF and recent CNN codecs, in both l2 and l∞ error metrics, for bit rates near or above the threshold of perceptually transparent reconstruction. These remarkable coding gains are made by deep learning for compression artifact removal. A restoration CNN is designed to map a lossy compressed image to its original. Its unique strength is to enforce a tight error bound on a per pixel basis. As such, no small distinctive structures of the original image can be dropped or distorted, even if they are statistical outliers that are otherwise sacrificed by mainstream CNN restoration methods 
650 4 |a Journal Article 
700 1 |a Wu, Xiaolin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 02., Seite 963-975  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:02  |g pages:963-975 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.3040074  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 02  |h 963-975