Self-Supervised Deep Correlation Tracking

The training of a feature extraction network typically requires abundant manually annotated training samples, making this a time-consuming and costly process. Accordingly, we propose an effective self-supervised learning-based tracker in a deep correlation framework (named: self-SDCT). Motivated by...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 976-985
1. Verfasser: Yuan, Di (VerfasserIn)
Weitere Verfasser: Chang, Xiaojun, Huang, Po-Yao, Liu, Qiao, He, Zhenyu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM318256088
003 DE-627
005 20231225164954.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.3037518  |2 doi 
028 5 2 |a pubmed24n1060.xml 
035 |a (DE-627)NLM318256088 
035 |a (NLM)33259298 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yuan, Di  |e verfasserin  |4 aut 
245 1 0 |a Self-Supervised Deep Correlation Tracking 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.12.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The training of a feature extraction network typically requires abundant manually annotated training samples, making this a time-consuming and costly process. Accordingly, we propose an effective self-supervised learning-based tracker in a deep correlation framework (named: self-SDCT). Motivated by the forward-backward tracking consistency of a robust tracker, we propose a multi-cycle consistency loss as self-supervised information for learning feature extraction network from adjacent video frames. At the training stage, we generate pseudo-labels of consecutive video frames by forward-backward prediction under a Siamese correlation tracking framework and utilize the proposed multi-cycle consistency loss to learn a feature extraction network. Furthermore, we propose a similarity dropout strategy to enable some low-quality training sample pairs to be dropped and also adopt a cycle trajectory consistency loss in each sample pair to improve the training loss function. At the tracking stage, we employ the pre-trained feature extraction network to extract features and utilize a Siamese correlation tracking framework to locate the target using forward tracking alone. Extensive experimental results indicate that the proposed self-supervised deep correlation tracker (self-SDCT) achieves competitive tracking performance contrasted to state-of-the-art supervised and unsupervised tracking methods on standard evaluation benchmarks 
650 4 |a Journal Article 
700 1 |a Chang, Xiaojun  |e verfasserin  |4 aut 
700 1 |a Huang, Po-Yao  |e verfasserin  |4 aut 
700 1 |a Liu, Qiao  |e verfasserin  |4 aut 
700 1 |a He, Zhenyu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 976-985  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:976-985 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.3037518  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 976-985