Sensor-based Particle Size Determination of Shredded Mixed Commercial Waste based on two-dimensional Images

Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Waste management (New York, N.Y.). - 1999. - 120(2021) vom: 01. Feb., Seite 784-794
1. Verfasser: Kandlbauer, L (VerfasserIn)
Weitere Verfasser: Khodier, K, Ninevski, D, Sarc, R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Waste management (New York, N.Y.)
Schlagworte:Journal Article Municipal solid waste PLS Particle size descriptors Particle size determination Sensor-based measurement Plastics Solid Waste
LEADER 01000naa a22002652 4500
001 NLM318234874
003 DE-627
005 20231225164927.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.wasman.2020.11.003  |2 doi 
028 5 2 |a pubmed24n1060.xml 
035 |a (DE-627)NLM318234874 
035 |a (NLM)33257132 
035 |a (PII)S0956-053X(20)30619-X 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kandlbauer, L  |e verfasserin  |4 aut 
245 1 0 |a Sensor-based Particle Size Determination of Shredded Mixed Commercial Waste based on two-dimensional Images 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.12.2020 
500 |a Date Revised 29.12.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. 
520 |a To optimize output streams in mechanical waste treatment plants dynamic particle size control is a promising approach. In addition to relevant actuators - such as an adjustable shredder gap width - this also requires technology for online and real-time measurements of the particle size distribution. The paper at hand presents a model in MATLAB® which extracts information about several geometric descriptors - such as diameters, lengths, areas, shape factors - from 2D images of individual particles taken by RGB cameras of pre-shredded, solid, mixed commercial waste and processes this data in a multivariate regression model using the Partial Least Squares Regression (PLSR) to predict the particle size class of each particle according to a drum screen. The investigated materials in this work are lightweight fraction, plastics, wood, paper-cardboard and residual fraction. The particle sizes are divided into classes defined by the screen cuts (in mm) 80, 60, 40, 20 and 10. The results show assignment reliability for certain materials of over 80%. Furthermore, when considering the results for determining a complete particle size distribution - for an exemplary real waste - the accuracy of the model is as good as 99% for the materials wood, 3D-plastics and residual fraction for each particle size class respectively as assignment errors partially compensate each other 
650 4 |a Journal Article 
650 4 |a Municipal solid waste 
650 4 |a PLS 
650 4 |a Particle size descriptors 
650 4 |a Particle size determination 
650 4 |a Sensor-based measurement 
650 7 |a Plastics  |2 NLM 
650 7 |a Solid Waste  |2 NLM 
700 1 |a Khodier, K  |e verfasserin  |4 aut 
700 1 |a Ninevski, D  |e verfasserin  |4 aut 
700 1 |a Sarc, R  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management (New York, N.Y.)  |d 1999  |g 120(2021) vom: 01. Feb., Seite 784-794  |w (DE-627)NLM098197061  |x 1879-2456  |7 nnns 
773 1 8 |g volume:120  |g year:2021  |g day:01  |g month:02  |g pages:784-794 
856 4 0 |u http://dx.doi.org/10.1016/j.wasman.2020.11.003  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 120  |j 2021  |b 01  |c 02  |h 784-794