Deep Object Tracking With Shrinkage Loss

In this paper, we address the issue of data imbalance in learning deep models for visual object tracking. Although it is well known that data distribution plays a crucial role in learning and inference models, considerably less attention has been paid to data imbalance in visual tracking. For the de...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 5 vom: 30. Mai, Seite 2386-2401
Auteur principal: Lu, Xiankai (Auteur)
Autres auteurs: Ma, Chao, Shen, Jianbing, Yang, Xiaokang, Reid, Ian, Yang, Ming-Hsuan
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM318194856
003 DE-627
005 20250228111954.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3041332  |2 doi 
028 5 2 |a pubmed25n1060.xml 
035 |a (DE-627)NLM318194856 
035 |a (NLM)33253114 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lu, Xiankai  |e verfasserin  |4 aut 
245 1 0 |a Deep Object Tracking With Shrinkage Loss 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.04.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we address the issue of data imbalance in learning deep models for visual object tracking. Although it is well known that data distribution plays a crucial role in learning and inference models, considerably less attention has been paid to data imbalance in visual tracking. For the deep regression trackers that directly learn a dense mapping from input images of target objects to soft response maps, we identify their performance is limited by the extremely imbalanced pixel-to-pixel differences when computing regression loss. This prevents existing end-to-end learnable deep regression trackers from performing as well as discriminative correlation filters (DCFs) trackers. For the deep classification trackers that draw positive and negative samples to learn discriminative classifiers, there exists heavy class imbalance due to a limited number of positive samples when compared to the number of negative samples. To balance training data, we propose a novel shrinkage loss to penalize the importance of easy training data mostly coming from the background, which facilitates both deep regression and classification trackers to better distinguish target objects from the background. We extensively validate the proposed shrinkage loss function on six benchmark datasets, including the OTB-2013, OTB-2015, UAV-123, VOT-2016, VOT-2018 and LaSOT. Equipped with our shrinkage loss, the proposed one-stage deep regression tracker achieves favorable results against state-of-the-art methods, especially in comparison with DCFs trackers. Meanwhile, our shrinkage loss generalizes well to deep classification trackers. When replacing the original binary cross entropy loss with our shrinkage loss, three representative baseline trackers achieve large performance gains, even setting new state-of-the-art results 
650 4 |a Journal Article 
700 1 |a Ma, Chao  |e verfasserin  |4 aut 
700 1 |a Shen, Jianbing  |e verfasserin  |4 aut 
700 1 |a Yang, Xiaokang  |e verfasserin  |4 aut 
700 1 |a Reid, Ian  |e verfasserin  |4 aut 
700 1 |a Yang, Ming-Hsuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 5 vom: 30. Mai, Seite 2386-2401  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:44  |g year:2022  |g number:5  |g day:30  |g month:05  |g pages:2386-2401 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3041332  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 5  |b 30  |c 05  |h 2386-2401