Chirality Transfer from Sub-Nanometer Biochemical Molecules to Sub-Micrometer Plasmonic Metastructures : Physiochemical Mechanisms, Biosensing, and Bioimaging Opportunities

© 2020 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 41 vom: 24. Okt., Seite e1907151
1. Verfasser: Cao, Zhaolong (VerfasserIn)
Weitere Verfasser: Gao, Han, Qiu, Meng, Jin, Wei, Deng, Shaozhi, Wong, Kwok-Yin, Lei, Dangyuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review chiral biosensing chiral plasmonics chirality transfer circular dichroism optical activities
Beschreibung
Zusammenfassung:© 2020 Wiley‐VCH GmbH.
Determining the structural chirality of biomolecules is of vital importance in bioscience and biomedicine. Conventional methods for characterizing molecular chirality, e.g., circular dichroism (CD) spectroscopy, require high-concentration specimens due to the weak electronic CD signals of biomolecules such as amino acids. Artificially designed chiral plasmonic metastructures exhibit strong intrinsic chirality. However, the significant size mismatch between metastructures and biomolecules makes the former unsuitable for chirality-recognition-based molecular discrimination. Fortunately, constructing metallic architectures through molecular self-assembly allows chirality transfer from sub-nanometer biomolecules to sub-micrometer, intrinsically achiral plasmonic metastructures by means of either near-field interaction or chirality inheritance, resulting in hybrid systems with CD signals orders of magnitude larger than that of pristine biomolecules. This exotic property provides a new means to determine molecular chirality at extremely low concentrations (ideally at the single-molecule level). Herein, three strategies of chirality transfer from sub-nanometer biomolecules to sub-micrometer metallic metastructures are analyzed. The physiochemical mechanisms responsible for chirality transfer are elaborated and new fascinating opportunities for employing plasmonic metastructures in chirality-based biosensing and bioimaging are outlined
Beschreibung:Date Completed 11.08.2021
Date Revised 11.08.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201907151