Selective extinctions resulting from random habitat destruction lead to under-estimates of local and regional biodiversity loss in a manipulative field experiment

© 2020 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 27(2021), 4 vom: 28. Feb., Seite 793-803
1. Verfasser: Almeida, Ryan J (VerfasserIn)
Weitere Verfasser: Berro, Alexander A G, Lippert, Alston, Clary, Jake, McKlin, Sam, Scott, Erin V, Smith, Kevin G
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article arthropods biodiversity experiment extinction probability habitat loss invertebrates null model rarefaction selectivity turnover
LEADER 01000naa a22002652 4500
001 NLM318161028
003 DE-627
005 20231225164757.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.15464  |2 doi 
028 5 2 |a pubmed24n1060.xml 
035 |a (DE-627)NLM318161028 
035 |a (NLM)33249693 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Almeida, Ryan J  |e verfasserin  |4 aut 
245 1 0 |a Selective extinctions resulting from random habitat destruction lead to under-estimates of local and regional biodiversity loss in a manipulative field experiment 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.04.2021 
500 |a Date Revised 21.04.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2020 John Wiley & Sons Ltd. 
520 |a Land-use change is a significant cause of anthropogenic extinctions, which are likely to continue and accelerate as habitat conversion proceeds in most biomes. One way to understand the effects of habitat loss on biodiversity is through improved tools for predicting the number and identity of species losses in response to habitat loss. There are relatively few methods for predicting extinctions and even fewer opportunities for rigorously assessing the quality of these predictions. In this paper, we address these issues by applying a new method based on rarefaction to predict species losses after random, but aggregated, habitat loss. We compare predictions from three rarefaction models, individual-based, sample-based, and spatially clustered, to those derived from a commonly used extinction estimation method, the species-area relationship (SAR). We apply each method to a mesocosm experiment, in which we aim to predict species richness and extinctions of arthropods immediately following 50% habitat loss. While each model produced strikingly accurate predictions of species richness immediately after the habitat loss disturbance, each model significantly underestimated the number of extinctions occurring at both the local (within-mesocosm) and regional (treatment-wide) scales. Despite the stochastic nature of our small-scale, short-term, and randomly applied habitat loss experiment, we found surprisingly clear evidence for extinction selectivity, for example, when abundant species with low extinction probabilities were extirpated following habitat loss. The important role played by selective extinction even in this contrived experimental system suggests that ecologically driven, trait-based extinctions play an equally important role to stochastic extinction, even when the disturbance itself has no clear selectivity. As a result, neutrally stochastic null models such as the SAR and rarefaction are likely to underestimate extinctions caused by habitat loss. Nevertheless, given the difficulty of predicting extinctions, null models provide useful benchmarks for conservation planning by providing minimum estimates and probabilities of species extinctions 
650 4 |a Journal Article 
650 4 |a arthropods 
650 4 |a biodiversity 
650 4 |a experiment 
650 4 |a extinction probability 
650 4 |a habitat loss 
650 4 |a invertebrates 
650 4 |a null model 
650 4 |a rarefaction 
650 4 |a selectivity 
650 4 |a turnover 
700 1 |a Berro, Alexander A G  |e verfasserin  |4 aut 
700 1 |a Lippert, Alston  |e verfasserin  |4 aut 
700 1 |a Clary, Jake  |e verfasserin  |4 aut 
700 1 |a McKlin, Sam  |e verfasserin  |4 aut 
700 1 |a Scott, Erin V  |e verfasserin  |4 aut 
700 1 |a Smith, Kevin G  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 27(2021), 4 vom: 28. Feb., Seite 793-803  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:4  |g day:28  |g month:02  |g pages:793-803 
856 4 0 |u http://dx.doi.org/10.1111/gcb.15464  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 4  |b 28  |c 02  |h 793-803