On the Development of a Novel Contrast Pulse Sequence for Polymer-Shelled Microbubbles
Contrast agents are routinely used in ultrasound examinations. Nonlinear ultrasound imaging techniques have been developed over decades to enhance the contrast between the tissue and the blood pool after the injection of ultrasound contrast agents (UCAs). In this study, we introduce a new contrast p...
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 68(2021), 5 vom: 17. Mai, Seite 1569-1579 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | Contrast agents are routinely used in ultrasound examinations. Nonlinear ultrasound imaging techniques have been developed over decades to enhance the contrast between the tissue and the blood pool after the injection of ultrasound contrast agents (UCAs). In this study, we introduce a new contrast pulse sequence, CPS4. The CPS4 combines pulse inversion (PI), subharmonic (SH), and ultraharmonic (UH) techniques to remove propagation distortion while capturing the unique SH and UH responses from UCAs. The novel CPS4 and conventional PI, SH, and UH techniques were used to detect the presence of a research-grade, thick-shell, polymer microbubble in a tissue-mimicking flow phantom. The contrast-to-tissue ratios (CTRs) obtained from the applications of all techniques were compared. The results show that the highest CTR of approximately 16 dB was obtained using CPS4, which was superior to the individual reference techniques: PI, SH, and UH techniques, in all scenarios considered in this study |
---|---|
Beschreibung: | Date Completed 01.10.2021 Date Revised 01.10.2021 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1525-8955 |
DOI: | 10.1109/TUFFC.2020.3041206 |