Sparse Learning-Based Correlation Filter for Robust Tracking

Many objective tracking methods are based on the framework of correlation filtering (CF) due to its high efficiency. In this paper, we propose a l2 -norm based sparse response regularization term to restrain unexpected crests in response for CF framework. CF trackers learn online to regress the regi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 25., Seite 878-891
1. Verfasser: Zhang, Wenhua (VerfasserIn)
Weitere Verfasser: Jiao, Licheng, Li, Yuxuan, Liu, Jia
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM318044935
003 DE-627
005 20250228104730.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.3039392  |2 doi 
028 5 2 |a pubmed25n1059.xml 
035 |a (DE-627)NLM318044935 
035 |a (NLM)33237861 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Wenhua  |e verfasserin  |4 aut 
245 1 0 |a Sparse Learning-Based Correlation Filter for Robust Tracking 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.12.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Many objective tracking methods are based on the framework of correlation filtering (CF) due to its high efficiency. In this paper, we propose a l2 -norm based sparse response regularization term to restrain unexpected crests in response for CF framework. CF trackers learn online to regress the region of interest into a Gaussian response. However, due to the uncertain transformations of tracked object, there are many unexpected crests in the response map. When the response of tracked object is corrupted by other crests, the tracker will lost the object. Therefore, the sparse response is used to increase the robustness to transformations of tracked object. Since the novel term is directly incorporated into the objective function of the CF framework, it can be used to improve the performance of many methods which are based on this framework. Moreover, from the solutions we derive, the new method will not increase the computational complexity. Through the experiments on benchmarks of OTB-100, TempleColor, VOT2016 and VOT2017, the proposed regularization term can improve the tracking performance of various CF trackers, including those based on standard discriminative CF framework and those based on context-aware CF framework. We also embed the sparse response regularization term in the state-of-the-art integrated tracker MCCT to test its generalization performance. Although MCCT is an expert integrated tracker and owns an exquisite algorithm for selecting experts, the experimental results show that our method can still improve its long-term tracking performance without increasing computational complexity 
650 4 |a Journal Article 
700 1 |a Jiao, Licheng  |e verfasserin  |4 aut 
700 1 |a Li, Yuxuan  |e verfasserin  |4 aut 
700 1 |a Liu, Jia  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 25., Seite 878-891  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:30  |g year:2021  |g day:25  |g pages:878-891 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.3039392  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 25  |h 878-891