Heavy-Tailed Self-Similarity Modeling for Single Image Super Resolution

Self-similarity is a prominent characteristic of natural images that can play a major role when it comes to their denoising, restoration or compression. In this paper, we propose a novel probabilistic model that is based on the concept of image patch similarity and applied to the problem of Single I...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 838-852
1. Verfasser: Chantas, Giannis (VerfasserIn)
Weitere Verfasser: Nikolopoulos, Spiros N, Kompatsiaris, Ioannis
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM317989812
003 DE-627
005 20231225164420.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.3038521  |2 doi 
028 5 2 |a pubmed24n1059.xml 
035 |a (DE-627)NLM317989812 
035 |a (NLM)33232237 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chantas, Giannis  |e verfasserin  |4 aut 
245 1 0 |a Heavy-Tailed Self-Similarity Modeling for Single Image Super Resolution 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.12.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Self-similarity is a prominent characteristic of natural images that can play a major role when it comes to their denoising, restoration or compression. In this paper, we propose a novel probabilistic model that is based on the concept of image patch similarity and applied to the problem of Single Image Super Resolution. Based on this model, we derive a Variational Bayes algorithm, which super resolves low-resolution images, where the assumed distribution for the quantified similarity between two image patches is heavy-tailed. Moreover, we prove mathematically that the proposed algorithm is both an extended and superior version of the probabilistic Non-Local Means (NLM). Its prime advantage remains though, which is that it requires no training. A comparison of the proposed approach with state-of-the-art methods, using various quantitative metrics shows that it is almost on par, for images depicting rural themes and in terms of the Structural Similarity Index (SSIM) with the best performing methods that rely on trained deep learning models. On the other hand, it is clearly inferior to them, for urban themed images and in terms of all metrics, especially for the Mean-Squared-Error (MSE). In addition, qualitative evaluation of the proposed approach is performed using the Perceptual Index metric, which has been introduced to better mimic the human perception of the image quality. This evaluation favors our approach when compared to the best performing method that requires no training, even if they perform equally in qualitative terms, reinforcing the argument that MSE is not always an accurate metric for image quality 
650 4 |a Journal Article 
700 1 |a Nikolopoulos, Spiros N  |e verfasserin  |4 aut 
700 1 |a Kompatsiaris, Ioannis  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 838-852  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:838-852 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.3038521  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 838-852