Prediction of lattice energy of benzene crystals : A robust theoretical approach

© 2020 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 42(2021), 4 vom: 05. Feb., Seite 248-260
1. Verfasser: Nguyen, Anh L P (VerfasserIn)
Weitere Verfasser: Mason, Thomas G, Freeman, Benny D, Izgorodina, Ekaterina I
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article correlation crystal structure energy energy ab-initio gas-phase
LEADER 01000naa a22002652 4500
001 NLM317987631
003 DE-627
005 20231225164418.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.26452  |2 doi 
028 5 2 |a pubmed24n1059.xml 
035 |a (DE-627)NLM317987631 
035 |a (NLM)33231872 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nguyen, Anh L P  |e verfasserin  |4 aut 
245 1 0 |a Prediction of lattice energy of benzene crystals  |b A robust theoretical approach 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.12.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Wiley Periodicals LLC. 
520 |a We present an inexpensive and robust theoretical approach based on the fragment molecular orbital methodology and the spin-ratio scaled second-order Møller-Plesset perturbation theory to predict the lattice energy of benzene crystals within 2 kJ⋅mol-1 . Inspired by the Harrison method to estimate the Madelung constant, the proposed approach calculates the lattice energy as a sum of two- and three-body interaction energies between a reference molecule and the surrounding molecules arranged in a sphere. The lattice energy converges rapidly at a radius of 13 Å. Adding the corrections to account for a higher correlated level of theory and basis set superposition for the Hartree Fock (HF) level produced a lattice energy of -57.5 kJ⋅mol-1 for the benzene crystal structure at 138 K. This estimate is within 1.6 kJ⋅mol-1 off the best theoretical prediction of -55.9 kJ⋅mol-1 . We applied this approach to calculate lattice energies of the crystal structures of phase I and phase II-polymorphs of benzene-observed at a higher temperature of 295 K. The stability of these polymorphs was correctly predicted, with phase II being energetically preferred by 3.7 kJ⋅mol-1 over phase I. The proposed approach gives a tremendous potential to predict stability of other molecular crystal polymorphs 
650 4 |a Journal Article 
650 4 |a correlation 
650 4 |a crystal structure 
650 4 |a energy 
650 4 |a energy ab-initio 
650 4 |a gas-phase 
700 1 |a Mason, Thomas G  |e verfasserin  |4 aut 
700 1 |a Freeman, Benny D  |e verfasserin  |4 aut 
700 1 |a Izgorodina, Ekaterina I  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 42(2021), 4 vom: 05. Feb., Seite 248-260  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:42  |g year:2021  |g number:4  |g day:05  |g month:02  |g pages:248-260 
856 4 0 |u http://dx.doi.org/10.1002/jcc.26452  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2021  |e 4  |b 05  |c 02  |h 248-260