Greenhouse gas emission mitigation potential from municipal solid waste treatment : A combined SD-LMDI model

Copyright © 2020 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Waste management (New York, N.Y.). - 1999. - 120(2021) vom: 01. Feb., Seite 725-733
1. Verfasser: Xiao, Shijiang (VerfasserIn)
Weitere Verfasser: Dong, Huijuan, Geng, Yong, Fujii, Minoru, Pan, Hengyu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Waste management (New York, N.Y.)
Schlagworte:Journal Article Driving forces Landfill gas utilization Logarithmic Mean Divisia Index (LMDI) System dynamics (SD) Waste separation Gases Greenhouse Gases Solid Waste
LEADER 01000naa a22002652 4500
001 NLM317902555
003 DE-627
005 20231225164234.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.wasman.2020.10.040  |2 doi 
028 5 2 |a pubmed24n1059.xml 
035 |a (DE-627)NLM317902555 
035 |a (NLM)33223250 
035 |a (PII)S0956-053X(20)30611-5 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xiao, Shijiang  |e verfasserin  |4 aut 
245 1 0 |a Greenhouse gas emission mitigation potential from municipal solid waste treatment  |b A combined SD-LMDI model 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.12.2020 
500 |a Date Revised 29.12.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2020 Elsevier Ltd. All rights reserved. 
520 |a Fast urbanization and economic prosperity generate huge amount of municipal solid waste (MSW). It is therefore critical to identify the determinants of greenhouse gas (GHG) emissions from MSW treatment and prepare potential GHG mitigation measures. A combined System Dynamics - Logarithmic Mean Divisia Index model is developed to identify the driving forces of GHG emission generated from MSW treatment and explore the mitigation potentials. Shanghai, a typical megacity in China is selected as a case study. Results showed that economic development, population scale and emission intensity were driving forces to induce GHG emissions from MSW treatment, while generation intensity and treatment structure were the factors to mitigate GHG emissions from MSW during 2000-2017. Scenario analysis further revealed that landfill gas utilization and MSW separation improvement were the most effective measures in reducing GHG emissions from MSW treatment, leading to about 88.07% and 85.48% of reduction compared with the business-as-usual scenario in 2050. Scenarios of improving incineration rate, reducing per capita MSW generation and restricting population growth will reduce GHG emissions by 72.29%, 30.06% and 0.30%, respectively. Utilizing landfill gas, improving MSW separation and promoting green behaviors are suggested to mitigate GHG emissions from MSW treatment 
650 4 |a Journal Article 
650 4 |a Driving forces 
650 4 |a Landfill gas utilization 
650 4 |a Logarithmic Mean Divisia Index (LMDI) 
650 4 |a System dynamics (SD) 
650 4 |a Waste separation 
650 7 |a Gases  |2 NLM 
650 7 |a Greenhouse Gases  |2 NLM 
650 7 |a Solid Waste  |2 NLM 
700 1 |a Dong, Huijuan  |e verfasserin  |4 aut 
700 1 |a Geng, Yong  |e verfasserin  |4 aut 
700 1 |a Fujii, Minoru  |e verfasserin  |4 aut 
700 1 |a Pan, Hengyu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management (New York, N.Y.)  |d 1999  |g 120(2021) vom: 01. Feb., Seite 725-733  |w (DE-627)NLM098197061  |x 1879-2456  |7 nnns 
773 1 8 |g volume:120  |g year:2021  |g day:01  |g month:02  |g pages:725-733 
856 4 0 |u http://dx.doi.org/10.1016/j.wasman.2020.10.040  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 120  |j 2021  |b 01  |c 02  |h 725-733