Tailored Graphene Micropatterns by Wafer-Scale Direct Transfer for Flexible Chemical Sensor Platform

© 2020 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 2 vom: 21. Jan., Seite e2004827
1. Verfasser: Kim, Yeonhoo (VerfasserIn)
Weitere Verfasser: Kim, Taehoon, Lee, Jinwoo, Choi, Yong Seok, Moon, Joonhee, Park, Seo Yun, Lee, Tae Hyung, Park, Hoon Kee, Lee, Sol A, Kwon, Min Sang, Byun, Hyung-Gi, Lee, Jong-Heun, Lee, Myoung-Gyu, Hong, Byung Hee, Jang, Ho Won
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 2D materials chemical sensor arrays finite element simulations graphene microscale patterning
Beschreibung
Zusammenfassung:© 2020 Wiley-VCH GmbH.
2D materials, such as graphene, exhibit great potential as functional materials for numerous novel applications due to their excellent properties. The grafting of conventional micropatterning techniques on new types of electronic devices is required to fully utilize the unique nature of graphene. However, the conventional lithography and polymer-supported transfer methods often induce the contamination and damage of the graphene surface due to polymer residues and harsh wet-transfer conditions. Herein, a novel strategy to obtain micropatterned graphene on polymer substrates using a direct curing process is demonstrated. Employing this method, entirely flexible, transparent, well-defined self-activated graphene sensor arrays, capable of gas discrimination without external heating, are fabricated on 4 in. wafer-scale substrates. Finite element method simulations show the potential of this patterning technique to maximize the performance of the sensor devices when the active channels of the 2D material are suspended and nanoscaled. This study contributes considerably to the development of flexible functional electronic devices based on 2D materials
Beschreibung:Date Revised 12.01.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202004827