The Perils and Pitfalls of Block Design for EEG Classification Experiments

A recent paper [31] claims to classify brain processing evoked in subjects watching ImageNet stimuli as measured with EEG and to employ a representation derived from this processing to construct a novel object classifier. That paper, together with a series of subsequent papers [11, 18, 20, 24, 25, 30...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2020) vom: 19. Nov.
1. Verfasser: Li, Ren (VerfasserIn)
Weitere Verfasser: Johansen, Jared S, Ahmed, Hamad, Ilyevsky, Thomas V, Wilbur, Ronnie B, Bharadwaj, Hari M, Siskind, Jeffrey Mark
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM317787640
003 DE-627
005 20240229142958.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.2973153  |2 doi 
028 5 2 |a pubmed24n1303.xml 
035 |a (DE-627)NLM317787640 
035 |a (NLM)33211652 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Ren  |e verfasserin  |4 aut 
245 1 4 |a The Perils and Pitfalls of Block Design for EEG Classification Experiments 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a A recent paper [31] claims to classify brain processing evoked in subjects watching ImageNet stimuli as measured with EEG and to employ a representation derived from this processing to construct a novel object classifier. That paper, together with a series of subsequent papers [11, 18, 20, 24, 25, 30, 34], claims to achieve successful results on a wide variety of computer-vision tasks, including object classification, transfer learning, and generation of images depicting human perception and thought using brain-derived representations measured through EEG. Our novel experiments and analyses demonstrate that their results crucially depend on the block design that they employ, where all stimuli of a given class are presented together, and fail with a rapid-event design, where stimuli of different classes are randomly intermixed. The block design leads to classification of arbitrary brain states based on block-level temporal correlations that are known to exist in all EEG data, rather than stimulus-related activity. Because every trial in their test sets comes from the same block as many trials in the corresponding training sets, their block design thus leads to classifying arbitrary temporal artifacts of the data instead of stimulus-related activity. This invalidates all subsequent analyses performed on this data in multiple published papers and calls into question all of the reported results. We further show that a novel object classifier constructed with a random codebook performs as well as or better than a novel object classifier constructed with the representation extracted from EEG data, suggesting that the performance of their classifier constructed with a representation extracted from EEG data does not benefit from the brain-derived representation. Together, our results illustrate the far-reaching implications of the temporal autocorrelations that exist in all neuroimaging data for classification experiments. Further, our results calibrate the underlying difficulty of the tasks involved and caution against overly optimistic, but incorrect, claims to the contrary 
650 4 |a Journal Article 
700 1 |a Johansen, Jared S  |e verfasserin  |4 aut 
700 1 |a Ahmed, Hamad  |e verfasserin  |4 aut 
700 1 |a Ilyevsky, Thomas V  |e verfasserin  |4 aut 
700 1 |a Wilbur, Ronnie B  |e verfasserin  |4 aut 
700 1 |a Bharadwaj, Hari M  |e verfasserin  |4 aut 
700 1 |a Siskind, Jeffrey Mark  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2020) vom: 19. Nov.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2020  |g day:19  |g month:11 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.2973153  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2020  |b 19  |c 11