VR Sickness Versus VR Presence : A Statistical Prediction Model

Although it is well-known that the negative effects of VR sickness, and the desirable sense of presence are important determinants of a user's immersive VR experience, there remains a lack of definitive research outcomes to enable the creation of methods to predict and/or optimize the trade-off...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 18., Seite 559-571
1. Verfasser: Kim, Woojae (VerfasserIn)
Weitere Verfasser: Lee, Sanghoon, Bovik, Alan Conrad
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM317738003
003 DE-627
005 20231225163910.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.3036782  |2 doi 
028 5 2 |a pubmed24n1059.xml 
035 |a (DE-627)NLM317738003 
035 |a (NLM)33206603 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Woojae  |e verfasserin  |4 aut 
245 1 0 |a VR Sickness Versus VR Presence  |b A Statistical Prediction Model 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.11.2020 
500 |a Date Revised 27.11.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Although it is well-known that the negative effects of VR sickness, and the desirable sense of presence are important determinants of a user's immersive VR experience, there remains a lack of definitive research outcomes to enable the creation of methods to predict and/or optimize the trade-offs between them. Most VR sickness assessment (VRSA) and VR presence assessment (VRPA) studies reported to date have utilized simple image patterns as probes, hence their results are difficult to apply to the highly diverse contents encountered in general, real-world VR environments. To help fill this void, we have constructed a large, dedicated VR sickness/presence (VR-SP) database, which contains 100 VR videos with associated human subjective ratings. Using this new resource, we developed a statistical model of spatio-temporal and rotational frame difference maps to predict VR sickness. We also designed an exceptional motion feature, which is expressed as the correlation between an instantaneous change feature and averaged temporal features. By adding additional features (visual activity, content features) to capture the sense of presence, we use the new data resource to explore the relationship between VRSA and VRPA. We also show the aggregate VR-SP model is able to predict VR sickness with an accuracy of 90% and VR presence with an accuracy of 75% using the new VR-SP dataset 
650 4 |a Journal Article 
700 1 |a Lee, Sanghoon  |e verfasserin  |4 aut 
700 1 |a Bovik, Alan Conrad  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 18., Seite 559-571  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:18  |g pages:559-571 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.3036782  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 18  |h 559-571