A Spatial-Temporal Recurrent Neural Network for Video Saliency Prediction

In this paper, a recurrent neural network is designed for video saliency prediction considering spatial-temporal features. In our work, video frames are routed through the static network for spatial features and the dynamic network for temporal features. For the spatial-temporal feature integration,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 18., Seite 572-587
1. Verfasser: Zhang, Kao (VerfasserIn)
Weitere Verfasser: Chen, Zhenzhong, Liu, Shan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM317737996
003 DE-627
005 20231225163910.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.3036749  |2 doi 
028 5 2 |a pubmed24n1059.xml 
035 |a (DE-627)NLM317737996 
035 |a (NLM)33206602 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Kao  |e verfasserin  |4 aut 
245 1 2 |a A Spatial-Temporal Recurrent Neural Network for Video Saliency Prediction 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.11.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, a recurrent neural network is designed for video saliency prediction considering spatial-temporal features. In our work, video frames are routed through the static network for spatial features and the dynamic network for temporal features. For the spatial-temporal feature integration, a novel select and re-weight fusion model is proposed which can learn and adjust the fusion weights based on the spatial and temporal features in different scenes automatically. Finally, an attention-aware convolutional long short term memory (ConvLSTM) network is developed to predict salient regions based on the features extracted from consecutive frames and generate the ultimate saliency map for each video frame. The proposed method is compared with state-of-the-art saliency models on five public video saliency benchmark datasets. The experimental results demonstrate that our model can achieve advanced performance on video saliency prediction 
650 4 |a Journal Article 
700 1 |a Chen, Zhenzhong  |e verfasserin  |4 aut 
700 1 |a Liu, Shan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 18., Seite 572-587  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:18  |g pages:572-587 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.3036749  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 18  |h 572-587