Machine Learning Predictions of Block Copolymer Self-Assembly

© 2020 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 52 vom: 23. Dez., Seite e2005713
1. Verfasser: Tu, Kun-Hua (VerfasserIn)
Weitere Verfasser: Huang, Hejin, Lee, Sangho, Lee, Wonmoo, Sun, Zehao, Alexander-Katz, Alfredo, Ross, Caroline A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article block copolymers machine learning nanomanufacturing ridge regression self-assembly
LEADER 01000naa a22002652 4500
001 NLM31773623X
003 DE-627
005 20231225163907.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202005713  |2 doi 
028 5 2 |a pubmed24n1059.xml 
035 |a (DE-627)NLM31773623X 
035 |a (NLM)33206426 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tu, Kun-Hua  |e verfasserin  |4 aut 
245 1 0 |a Machine Learning Predictions of Block Copolymer Self-Assembly 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 29.12.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Wiley-VCH GmbH. 
520 |a Directed self-assembly of block copolymers is a key enabler for nanofabrication of devices with sub-10 nm feature sizes, allowing patterning far below the resolution limit of conventional photolithography. Among all the process steps involved in block copolymer self-assembly, solvent annealing plays a dominant role in determining the film morphology and pattern quality, yet the interplay of the multiple parameters during solvent annealing, including the initial thickness, swelling, time, and solvent ratio, makes it difficult to predict and control the resultant self-assembled pattern. Here, machine learning tools are applied to analyze the solvent annealing process and predict the effect of process parameters on morphology and defectivity. Two neural networks are constructed and trained, yielding accurate prediction of the final morphology in agreement with experimental data. A ridge regression model is constructed to identify the critical parameters that determine the quality of line/space patterns. These results illustrate the potential of machine learning to inform nanomanufacturing processes 
650 4 |a Journal Article 
650 4 |a block copolymers 
650 4 |a machine learning 
650 4 |a nanomanufacturing 
650 4 |a ridge regression 
650 4 |a self-assembly 
700 1 |a Huang, Hejin  |e verfasserin  |4 aut 
700 1 |a Lee, Sangho  |e verfasserin  |4 aut 
700 1 |a Lee, Wonmoo  |e verfasserin  |4 aut 
700 1 |a Sun, Zehao  |e verfasserin  |4 aut 
700 1 |a Alexander-Katz, Alfredo  |e verfasserin  |4 aut 
700 1 |a Ross, Caroline A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 32(2020), 52 vom: 23. Dez., Seite e2005713  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:32  |g year:2020  |g number:52  |g day:23  |g month:12  |g pages:e2005713 
856 4 0 |u http://dx.doi.org/10.1002/adma.202005713  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2020  |e 52  |b 23  |c 12  |h e2005713