Population agglomeration is a harbinger of the spatial complexity of COVID-19

© 2020 Elsevier B.V. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering journal (Lausanne, Switzerland : 1996). - 1999. - 420(2021) vom: 15. Sept., Seite 127702
1. Verfasser: Geng, Xiaolong (VerfasserIn)
Weitere Verfasser: Gerges, Firas, Katul, Gabriel G, Bou-Zeid, Elie, Nassif, Hani, Boufadel, Michel C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Chemical engineering journal (Lausanne, Switzerland : 1996)
Schlagworte:Journal Article COVID-19 Multifractality Population agglomeration Scaling Spectral analysis Susceptible-infectious-recovered (SIR) model
LEADER 01000naa a22002652 4500
001 NLM317714546
003 DE-627
005 20231225163840.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.cej.2020.127702  |2 doi 
028 5 2 |a pubmed24n1059.xml 
035 |a (DE-627)NLM317714546 
035 |a (NLM)33204214 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Geng, Xiaolong  |e verfasserin  |4 aut 
245 1 0 |a Population agglomeration is a harbinger of the spatial complexity of COVID-19 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 17.06.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Elsevier B.V. All rights reserved. 
520 |a The spatial template over which COVID-19 infections operate is a result of nested societal decisions involving complex political and epidemiological processes at a broad range of spatial scales. It is characterized by 'hotspots' of high infections interspersed within regions where infections are sporadic to absent. In this work, the sparseness of COVID-19 infections and their time variations were analyzed across the US at scales ranging from 10 km (county scale) to 2600 km (continental scale). It was found that COVID-19 cases are multi-scaling with a multifractality kernel that monotonically approached that of the underlying population. The spatial correlation of infections between counties increased rapidly in March 2020; that rise continued but at a slower pace subsequently, trending towards the spatial correlation of the population agglomeration. This shows that the disease had already spread across the USA in early March such that travel restriction thereafter (starting on March 15th 2020) had minor impact on the subsequent spatial propagation of COVID-19. The ramifications of targeted interventions on spatial patterns of new infections were explored using the epidemiological susceptible-infectious-recovered (SIR) model mapped onto the population agglomeration template. These revealed that re-opening rural areas would have a smaller impact on the spread and evolution of the disease than re-opening urban (dense) centers which would disturb the system for months. This study provided a novel way for interpreting the spatial spread of COVID-19, along with a practical approach (multifractals/SIR/spectral slope) that could be employed to capture the variability and intermittency at all scales while maintaining the spatial structure 
650 4 |a Journal Article 
650 4 |a COVID-19 
650 4 |a Multifractality 
650 4 |a Population agglomeration 
650 4 |a Scaling 
650 4 |a Spectral analysis 
650 4 |a Susceptible-infectious-recovered (SIR) model 
700 1 |a Gerges, Firas  |e verfasserin  |4 aut 
700 1 |a Katul, Gabriel G  |e verfasserin  |4 aut 
700 1 |a Bou-Zeid, Elie  |e verfasserin  |4 aut 
700 1 |a Nassif, Hani  |e verfasserin  |4 aut 
700 1 |a Boufadel, Michel C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Chemical engineering journal (Lausanne, Switzerland : 1996)  |d 1999  |g 420(2021) vom: 15. Sept., Seite 127702  |w (DE-627)NLM098273531  |x 1385-8947  |7 nnns 
773 1 8 |g volume:420  |g year:2021  |g day:15  |g month:09  |g pages:127702 
856 4 0 |u http://dx.doi.org/10.1016/j.cej.2020.127702  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 420  |j 2021  |b 15  |c 09  |h 127702