Contour-Aware Loss : Boundary-Aware Learning for Salient Object Segmentation

We present a learning model that makes full use of boundary information for salient object segmentation. Specifically, we come up with a novel loss function, i.e., Contour Loss, which leverages object contours to guide models to perceive salient object boundaries. Such a boundary-aware network can l...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 17., Seite 431-443
1. Verfasser: Chen, Zixuan (VerfasserIn)
Weitere Verfasser: Zhou, Huajun, Lai, Jianhuang, Yang, Lingxiao, Xie, Xiaohua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM317691015
003 DE-627
005 20250228093532.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.3037536  |2 doi 
028 5 2 |a pubmed25n1058.xml 
035 |a (DE-627)NLM317691015 
035 |a (NLM)33201818 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Zixuan  |e verfasserin  |4 aut 
245 1 0 |a Contour-Aware Loss  |b Boundary-Aware Learning for Salient Object Segmentation 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 24.11.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present a learning model that makes full use of boundary information for salient object segmentation. Specifically, we come up with a novel loss function, i.e., Contour Loss, which leverages object contours to guide models to perceive salient object boundaries. Such a boundary-aware network can learn boundary-wise distinctions between salient objects and background, hence effectively facilitating the salient object segmentation. Yet the Contour Loss emphasizes the boundaries to capture the contextual details in the local range. We further propose the hierarchical global attention module (HGAM), which forces the model hierarchically to attend to global contexts, thus captures the global visual saliency. Comprehensive experiments on six benchmark datasets show that our method achieves superior performance over state-of-the-art ones. Moreover, our model has a real-time speed of 26 fps on a TITAN X GPU 
650 4 |a Journal Article 
700 1 |a Zhou, Huajun  |e verfasserin  |4 aut 
700 1 |a Lai, Jianhuang  |e verfasserin  |4 aut 
700 1 |a Yang, Lingxiao  |e verfasserin  |4 aut 
700 1 |a Xie, Xiaohua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 17., Seite 431-443  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:30  |g year:2021  |g day:17  |g pages:431-443 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.3037536  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 17  |h 431-443