Online Learning-Based Multi-Stage Complexity Control for Live Video Coding

High Efficiency Video Coding (HEVC) can significantly improve the compression efficiency in comparison with the preceding H.264/Advanced Video Coding (AVC) but at the cost of extremely high computational complexity. Hence, it is challenging to realize live video applications on low-delay and power-c...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 13., Seite 641-656
1. Verfasser: Huang, Chao (VerfasserIn)
Weitere Verfasser: Peng, Zongju, Xu, Yong, Chen, Fen, Jiang, Qiuping, Zhang, Yun, Jiang, Gangyi, Ho, Yo-Sung
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:High Efficiency Video Coding (HEVC) can significantly improve the compression efficiency in comparison with the preceding H.264/Advanced Video Coding (AVC) but at the cost of extremely high computational complexity. Hence, it is challenging to realize live video applications on low-delay and power-constrained devices, such as the smart mobile devices. In this article, we propose an online learning-based multi-stage complexity control method for live video coding. The proposed method consists of three stages: multi-accuracy Coding Unit (CU) decision, multi-stage complexity allocation, and Coding Tree Unit (CTU) level complexity control. Consequently, the encoding complexity can be accurately controlled to correspond with the computing capability of the video-capable device by replacing the traditional brute-force search with the proposed algorithm, which properly determines the optimal CU size. Specifically, the multi-accuracy CU decision model is obtained by an online learning approach to accommodate the different characteristics of input videos. In addition, multi-stage complexity allocation is implemented to reasonably allocate the complexity budgets to each coding level. In order to achieve a good trade-off between complexity control and rate distortion (RD) performance, the CTU-level complexity control is proposed to select the optimal accuracy of the CU decision model. The experimental results show that the proposed algorithm can accurately control the coding complexity from 100% to 40%. Furthermore, the proposed algorithm outperforms the state-of-the-art algorithms in terms of both accuracy of complexity control and RD performance
Beschreibung:Date Revised 07.12.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2020.3036766