SDP-GAN : Saliency Detail Preservation Generative Adversarial Networks for High Perceptual Quality Style Transfer

The paper proposes a solution to effectively handle salient regions for style transfer between unpaired datasets. Recently, Generative Adversarial Networks (GAN) have demonstrated their potentials of translating images from source domain X to target domain Y in the absence of paired examples. Howeve...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 13., Seite 374-385
1. Verfasser: Li, Ru (VerfasserIn)
Weitere Verfasser: Wu, Chi-Hao, Liu, Shuaicheng, Wang, Jue, Wang, Guangfu, Liu, Guanghui, Zeng, Bing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM317535943
003 DE-627
005 20231225163454.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.3036754  |2 doi 
028 5 2 |a pubmed24n1058.xml 
035 |a (DE-627)NLM317535943 
035 |a (NLM)33186111 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Ru  |e verfasserin  |4 aut 
245 1 0 |a SDP-GAN  |b Saliency Detail Preservation Generative Adversarial Networks for High Perceptual Quality Style Transfer 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 24.11.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The paper proposes a solution to effectively handle salient regions for style transfer between unpaired datasets. Recently, Generative Adversarial Networks (GAN) have demonstrated their potentials of translating images from source domain X to target domain Y in the absence of paired examples. However, such a translation cannot guarantee to generate high perceptual quality results. Existing style transfer methods work well with relatively uniform content, they often fail to capture geometric or structural patterns that always belong to salient regions. Detail losses in structured regions and undesired artifacts in smooth regions are unavoidable even if each individual region is correctly transferred into the target style. In this paper, we propose SDP-GAN, a GAN-based network for solving such problems while generating enjoyable style transfer results. We introduce a saliency network, which is trained with the generator simultaneously. The saliency network has two functions: (1) providing constraints for content loss to increase punishment for salient regions, and (2) supplying saliency features to generator to produce coherent results. Moreover, two novel losses are proposed to optimize the generator and saliency networks. The proposed method preserves the details on important salient regions and improves the total image perceptual quality. Qualitative and quantitative comparisons against several leading prior methods demonstrates the superiority of our method 
650 4 |a Journal Article 
700 1 |a Wu, Chi-Hao  |e verfasserin  |4 aut 
700 1 |a Liu, Shuaicheng  |e verfasserin  |4 aut 
700 1 |a Wang, Jue  |e verfasserin  |4 aut 
700 1 |a Wang, Guangfu  |e verfasserin  |4 aut 
700 1 |a Liu, Guanghui  |e verfasserin  |4 aut 
700 1 |a Zeng, Bing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 13., Seite 374-385  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:13  |g pages:374-385 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.3036754  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 13  |h 374-385