ProxIQA : A Proxy Approach to Perceptual Optimization of Learned Image Compression

The use of lp (p = 1,2) norms has largely dominated the measurement of loss in neural networks due to their simplicity and analytical properties. However, when used to assess the loss of visual information, these simple norms are not very consistent with human perception. Here, we describe a differe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 13., Seite 360-373
1. Verfasser: Chen, Li-Heng (VerfasserIn)
Weitere Verfasser: Bampis, Christos G, Li, Zhi, Norkin, Andrey, Bovik, Alan C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM317535935
003 DE-627
005 20231225163454.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.3036752  |2 doi 
028 5 2 |a pubmed24n1058.xml 
035 |a (DE-627)NLM317535935 
035 |a (NLM)33186110 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Li-Heng  |e verfasserin  |4 aut 
245 1 0 |a ProxIQA  |b A Proxy Approach to Perceptual Optimization of Learned Image Compression 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.05.2021 
500 |a Date Revised 20.05.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The use of lp (p = 1,2) norms has largely dominated the measurement of loss in neural networks due to their simplicity and analytical properties. However, when used to assess the loss of visual information, these simple norms are not very consistent with human perception. Here, we describe a different "proximal" approach to optimize image analysis networks against quantitative perceptual models. Specifically, we construct a proxy network, broadly termed ProxIQA, which mimics the perceptual model while serving as a loss layer of the network. We experimentally demonstrate how this optimization framework can be applied to train an end-to-end optimized image compression network. By building on top of an existing deep image compression model, we are able to demonstrate a bitrate reduction of as much as 31% over MSE optimization, given a specified perceptual quality (VMAF) level 
650 4 |a Journal Article 
700 1 |a Bampis, Christos G  |e verfasserin  |4 aut 
700 1 |a Li, Zhi  |e verfasserin  |4 aut 
700 1 |a Norkin, Andrey  |e verfasserin  |4 aut 
700 1 |a Bovik, Alan C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 13., Seite 360-373  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:13  |g pages:360-373 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.3036752  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 13  |h 360-373