New High Donor Electrolyte for Lithium-Sulfur Batteries
© 2020 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 52 vom: 26. Dez., Seite e2005022 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article 1,3-dimethyl-2-imidazolidinone lithium-sulfur batteries shuttling effects sulfur radicals |
Zusammenfassung: | © 2020 Wiley-VCH GmbH. The unparalleled theoretical specific energy of lithium-sulfur (Li-S) batteries has attracted considerable research interest from within the battery community. However, most of the long cycling results attained thus far relies on using a large amount of electrolyte in the cell, which adversely affects the specific energy of Li-S batteries. This shortcoming originates from the low solubility of polysulfides in the electrolyte. Here, 1,3-dimethyl-2-imidazolidinone (DMI) is reported as a new high donor electrolyte for Li-S batteries. The high solubility of polysulfides in DMI and its activation of a new reaction route, which engages the sulfur radical (S3 •- ), enables the efficient utilization of sulfur as reflected in the specific capacity of 1595 mAh g-1 under lean electrolyte conditions of 5 μLelectrolyte mgsulfur -1 . Moreover, the addition of LiNO3 stabilizes the lithium metal interface, thereby elevating the cycling performance to one of the highest known for high donor electrolytes in Li-S cells. These engineered high donor electrolytes are expected to advance Li-S batteries to cover a wide range of practical applications, particularly by incorporating established strategies to realize the reversibility of lithium metal electrodes |
---|---|
Beschreibung: | Date Revised 29.12.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202005022 |