Analysis of the SBP-SAT Stabilization for Finite Element Methods Part I : Linear Problems

© The Author(s) 2020.

Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing. - 1999. - 85(2020), 2 vom: 28., Seite 43
1. Verfasser: Abgrall, R (VerfasserIn)
Weitere Verfasser: Nordström, J, Öffner, P, Tokareva, S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of scientific computing
Schlagworte:Journal Article Continuous Galerkin Hyperbolic conservation laws Initial-boundary value problem Simultaneous approximation terms Stability
LEADER 01000naa a22002652 4500
001 NLM317520210
003 DE-627
005 20231225163435.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10915-020-01349-z  |2 doi 
028 5 2 |a pubmed24n1058.xml 
035 |a (DE-627)NLM317520210 
035 |a (NLM)33184528 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Abgrall, R  |e verfasserin  |4 aut 
245 1 0 |a Analysis of the SBP-SAT Stabilization for Finite Element Methods Part I  |b Linear Problems 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.12.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © The Author(s) 2020. 
520 |a In the hyperbolic community, discontinuous Galerkin (DG) approaches are mainly applied when finite element methods are considered. As the name suggested, the DG framework allows a discontinuity at the element interfaces, which seems for many researchers a favorable property in case of hyperbolic balance laws. On the contrary, continuous Galerkin methods appear to be unsuitable for hyperbolic problems and there exists still the perception that continuous Galerkin methods are notoriously unstable. To remedy this issue, stabilization terms are usually added and various formulations can be found in the literature. However, this perception is not true and the stabilization terms are unnecessary, in general. In this paper, we deal with this problem, but present a different approach. We use the boundary conditions to stabilize the scheme following a procedure that are frequently used in the finite difference community. Here, the main idea is to impose the boundary conditions weakly and specific boundary operators are constructed such that they guarantee stability. This approach has already been used in the discontinuous Galerkin framework, but here we apply it with a continuous Galerkin scheme. No internal dissipation is needed even if unstructured grids are used. Further, we point out that we do not need exact integration, it suffices if the quadrature rule and the norm in the differential operator are the same, such that the summation-by-parts property is fulfilled meaning that a discrete Gauss Theorem is valid. This contradicts the perception in the hyperbolic community that stability issues for pure Galerkin scheme exist. In numerical simulations, we verify our theoretical analysis 
650 4 |a Journal Article 
650 4 |a Continuous Galerkin 
650 4 |a Hyperbolic conservation laws 
650 4 |a Initial-boundary value problem 
650 4 |a Simultaneous approximation terms 
650 4 |a Stability 
700 1 |a Nordström, J  |e verfasserin  |4 aut 
700 1 |a Öffner, P  |e verfasserin  |4 aut 
700 1 |a Tokareva, S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of scientific computing  |d 1999  |g 85(2020), 2 vom: 28., Seite 43  |w (DE-627)NLM098177567  |x 0885-7474  |7 nnns 
773 1 8 |g volume:85  |g year:2020  |g number:2  |g day:28  |g pages:43 
856 4 0 |u http://dx.doi.org/10.1007/s10915-020-01349-z  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 85  |j 2020  |e 2  |b 28  |h 43